Software Open Access
Schlegel, Fabian;
Draw, Mazen;
Evdokimov, Ilya;
Hänsch, Susann;
Khan, Harris;
Lehnigk, Ronald;
Meller, Richard;
Petelin, Gašper;
Tekavčič, Matej
{
"name": "HZDR Multiphase Addon for OpenFOAM",
"contributor": [
{
"affiliation": "Eidgen\u00f6ssische Technische Hochschule Z\u00fcrich, Swizerland",
"name": "Couteau, Arthur",
"@type": "Person"
},
{
"affiliation": "Faculty of Engineering and Physical Sciences, University of Leeds, United Kingdom",
"name": "Colombo, Marco",
"@type": "Person"
},
{
"affiliation": "CADFEM GmbH, Germany",
"name": "Kriebitzsch, Sebastian",
"@type": "Person"
},
{
"affiliation": "Technische Universit\u00e4t Dresden, Germany",
"name": "Parekh, Jigar",
"@type": "Person"
}
],
"description": "<p>The HZDR multiphase addon contains additional code for the open-source CFD software OpenFOAM, released by <a href=\"http://www.openfoam.org\">The OpenFOAM Foundation</a>. The developments are dedicated to the numerical simulation of multiphase flows, in particular to the multi-field two-fluid model (Euler-Euler method). Within the OpenFOAM library the multiphaseEulerFoam framework is used for this type of simulation. The addon contains a modified multiphaseEulerFoam named <em>HZDRmultiphaseEulerFoam</em> with the full support of the HZDR baseline model set for polydisperse bubbly flows according to Liao et al. (<a href=\"https://doi.org/10.1016/j.ces.2019.03.007\">Chem Eng Sci, 2019, Vol. 202, 55-69</a>). In addition a solver dedicated to a hybrid modelling approach (dispersed and resolved interfaces, Meller et al., <a href=\"https://doi.org/10.1002/fld.4907\">Int J Numer Meth Fluids. 2021, Vol. 93, 748-773</a>) named <em>cipsaMultiphaseEulerFoam</em> is provided with the addon. This solver has an interface to the <em>multiphaseEulerFoam</em> framework and utilizes all available interfacial models of it.</p>\n\n<p><strong>General enhancements</strong></p>\n\n<ul>\n\t<li>modified turbulent wall functions of Menter according to Rzehak and Kriebitzsch (<a href=\"http://dx.doi.org/10.1016/j.ijmultiphaseflow.2014.09.005\">Int J Multiphase Flow, 2015, Vol. 68, 135-152</a>)</li>\n\t<li>dynamic time step adjustment via PID controller</li>\n</ul>\n\n<p><strong>HZDRmultiphaseEulerFoam</strong></p>\n\n<ul>\n\t<li>bubble induced turbulence model of Ma et al. (<a href=\"https://doi.org/10.1103/PhysRevFluids.2.034301\">Phys Rev Fluids, 2017, Vol. 2, 034301</a>)</li>\n\t<li>drag model of Ishii and Zuber (<a href=\"https://doi.org/10.1002/aic.690250513\">AIChE Journal, 1979, Vol. 25, 843-855</a>) without correction for swarm and/or viscous effects</li>\n\t<li>wall lubrication of Hosokawa et al. (<a href=\"https://doi.org/10.1115/FEDSM2002-31148\">ASME Joint US-European Fluids Engineering Division Conference, 2002</a>)</li>\n\t<li>additional breakup and coalescence models for class method according to Liao et al. (<a href=\"https://doi.org/10.1016/j.ces.2014.09.042\">Chem Eng Sci, 2015, Vol. 122, 336-349</a>)</li>\n\t<li>degassing boundary condition (fvOption)</li>\n\t<li>lift force correlation of Hessenkemper et al. (<a href=\"https://doi.org/10.1016/j.ijmultiphaseflow.2021.103587\">Int J Multiphase Flow, 2021, Vol. 138, 103587</a>)</li>\n\t<li>aspect ratio correlation of Ziegenhein and Lucas (<a href=\"https://doi.org/10.1016/j.expthermflusci.2017.03.009\">Exp. Therm. Fluid Sci., 2017, Vol. 85, 248–256</a>)</li>\n\t<li>real pressure treatment via explicit turbulent normal stress according to Rzehak et al. (<a href=\"https://doi.org/10.1016/j.nucengdes.2021.111079\">Nucl Eng Des., 2021, Vol. 374, 111079</a>)</li>\n\t<li>configuration files and tutorials for easy setup of baseline cases</li>\n</ul>\n\n<p><strong>cipsaMultiphaseEulerFoam</strong></p>\n\n<ul>\n\t<li>morphology adaptive modelling framework for predicting dispersed and resolved interfaces based on Eulerian multi-field two-fluid model</li>\n\t<li>compact momentum interpolation method according to Cubero et al. (<a href=\"https://doi.org/10.1016/j.compchemeng.2013.12.002\">Comput Chem Eng, 2014, Vol. 62, 96-107</a>), including virtual mass</li>\n\t<li>numerical drag according to Strubelj and Tiselj (<a href=\"https://doi.org/10.1002/nme.2978\">Int J Numer Methods Eng, 2011, Vol. 85, 575-590</a>) to describe resolved interfaces in a volume-of-fluid like manner</li>\n\t<li>n-phase partial elimination algorithm for momentum equations to resolve strong phase coupling (Meller et al., <a href=\"https://doi.org/10.1002/fld.4907\">Int J Numer Meth Fluids. 2021, Vol. 93, 748-773</a>)</li>\n\t<li>free surface turbulence damping for k-ω SST (symmetric and asymmetric damping, Frederix et al., <a href=\"https://doi.org/10.1016/j.nucengdes.2018.04.010\"> Nucl Eng Des, 2018, Vol. 333, 122-130</a>)</li>\n\t<li>sub-grid scale modelling framework:\n\t<ul>\n\t\t<li>additional LES models for the unclosed convective sub-grid scale term</li>\n\t\t<li>closure models for sub-grid surface tension term</li>\n\t</ul>\n\t</li>\n\t<li>configuration files and tutorials for easy setup of hybrid cases</li>\n</ul>",
"datePublished": "2021-01-26",
"@context": "https://schema.org/",
"version": "1.1.0",
"inLanguage": {
"alternateName": "eng",
"name": "English",
"@type": "Language"
},
"creator": [
{
"affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany",
"name": "Schlegel, Fabian",
"@id": "https://orcid.org/0000-0003-3824-9568",
"@type": "Person"
},
{
"affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany",
"name": "Draw, Mazen",
"@id": "https://orcid.org/0000-0002-0268-9118",
"@type": "Person"
},
{
"affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany",
"name": "Evdokimov, Ilya",
"@type": "Person"
},
{
"affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany",
"name": "H\u00e4nsch, Susann",
"@id": "https://orcid.org/0000-0003-1296-5566",
"@type": "Person"
},
{
"affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany",
"name": "Khan, Harris",
"@type": "Person"
},
{
"affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany",
"name": "Lehnigk, Ronald",
"@id": "https://orcid.org/0000-0002-5408-7370",
"@type": "Person"
},
{
"affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany",
"name": "Meller, Richard",
"@id": "https://orcid.org/0000-0002-3801-2555",
"@type": "Person"
},
{
"affiliation": "Computer Systems Department, Jo\u017eef Stefan Institute, Slovenia",
"name": "Petelin, Ga\u0161per",
"@type": "Person"
},
{
"affiliation": "Reactor Engineering Division, Jo\u017eef Stefan Institute, Slovenia",
"name": "Tekav\u010di\u010d, Matej",
"@id": "https://orcid.org/0000-0002-9090-7671",
"@type": "Person"
}
],
"url": "https://rodare.hzdr.de/record/896",
"@type": "SoftwareSourceCode",
"@id": "https://doi.org/10.14278/rodare.896",
"identifier": "https://doi.org/10.14278/rodare.896",
"sameAs": [
"https://www.hzdr.de/publications/Publ-32194"
],
"keywords": [
"Multiphase Flow",
"Numerical Simulations",
"OpenFOAM",
"CFD",
"Finite volume method",
"Baseline model",
"Multi-field two-fluid model",
"Eulerian-Eulerian model",
"Momentum interpolation",
"Partial elimination algorithm",
"Free Surface"
],
"license": "https://opensource.org/licenses/GPL-3.0"
}
| All versions | This version | |
|---|---|---|
| Views | 30,825 | 2,021 |
| Downloads | 8,745 | 370 |
| Data volume | 126.4 GB | 6.1 GB |
| Unique views | 19,519 | 1,696 |
| Unique downloads | 5,896 | 234 |