Software Open Access
Schlegel, Fabian;
Draw, Mazen;
Evdokimov, Ilya;
Hänsch, Susann;
Khan, Harris;
Lehnigk, Ronald;
Meller, Richard;
Petelin, Gašper;
Tekavčič, Matej
{ "updated": "2021-03-26T11:12:15.284465+00:00", "stats": { "volume": 283498871.0, "unique_downloads": 10.0, "version_unique_downloads": 69.0, "unique_views": 51.0, "downloads": 15.0, "version_unique_views": 335.0, "version_views": 523.0, "version_downloads": 139.0, "version_volume": 3356313356.0, "views": 61.0 }, "files": [ { "checksum": "md5:f50dd1710f8fffdf3d353eb75656396c", "key": "HZDR-Multiphase-Addon-1.1.0.tar.gz", "type": "gz", "size": 407473, "links": { "self": "https://rodare.hzdr.de/api/files/721eee10-c5e5-4f55-844c-c8f800ec70a5/HZDR-Multiphase-Addon-1.1.0.tar.gz" }, "bucket": "721eee10-c5e5-4f55-844c-c8f800ec70a5" }, { "checksum": "md5:48fd5b9d9cb2fc842fe22fb88fe118ae", "key": "OpenFOAM-dev.tar.gz", "type": "gz", "size": 80810978, "links": { "self": "https://rodare.hzdr.de/api/files/721eee10-c5e5-4f55-844c-c8f800ec70a5/OpenFOAM-dev.tar.gz" }, "bucket": "721eee10-c5e5-4f55-844c-c8f800ec70a5" }, { "checksum": "md5:7608a1b126c77ac73d4298ea627beeb3", "key": "README.md", "type": "md", "size": 1910, "links": { "self": "https://rodare.hzdr.de/api/files/721eee10-c5e5-4f55-844c-c8f800ec70a5/README.md" }, "bucket": "721eee10-c5e5-4f55-844c-c8f800ec70a5" }, { "checksum": "md5:a397310f1c0ba31e2956571a1ce934dd", "key": "ThirdParty-dev.tar.gz", "type": "gz", "size": 12736602, "links": { "self": "https://rodare.hzdr.de/api/files/721eee10-c5e5-4f55-844c-c8f800ec70a5/ThirdParty-dev.tar.gz" }, "bucket": "721eee10-c5e5-4f55-844c-c8f800ec70a5" } ], "owners": [ 141 ], "metadata": { "resource_type": { "type": "software", "title": "Software" }, "relations": { "version": [ { "is_last": true, "last_child": { "pid_value": "896", "pid_type": "recid" }, "count": 3, "index": 2, "parent": { "pid_value": "767", "pid_type": "recid" } } ] }, "notes": "This work was supported by the Helmholtz European Partnering Program in the project \"Crossing borders and scales (Crossing)\"", "title": "HZDR Multiphase Addon for OpenFOAM", "creators": [ { "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", "orcid": "0000-0003-3824-9568", "name": "Schlegel, Fabian" }, { "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", "orcid": "0000-0002-0268-9118", "name": "Draw, Mazen" }, { "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", "name": "Evdokimov, Ilya" }, { "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", "orcid": "0000-0003-1296-5566", "name": "H\u00e4nsch, Susann" }, { "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", "name": "Khan, Harris" }, { "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", "orcid": "0000-0002-5408-7370", "name": "Lehnigk, Ronald" }, { "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", "orcid": "0000-0002-3801-2555", "name": "Meller, Richard" }, { "affiliation": "Computer Systems Department, Jo\u017eef Stefan Institute, Slovenia", "name": "Petelin, Ga\u0161per" }, { "affiliation": "Reactor Engineering Division, Jo\u017eef Stefan Institute, Slovenia", "orcid": "0000-0002-9090-7671", "name": "Tekav\u010di\u010d, Matej" } ], "related_identifiers": [ { "scheme": "url", "relation": "isIdenticalTo", "identifier": "https://www.hzdr.de/publications/Publ-32194" }, { "scheme": "doi", "relation": "isVersionOf", "identifier": "10.14278/rodare.767" } ], "access_right": "open", "doi": "10.14278/rodare.896", "version": "1.1.0", "keywords": [ "Multiphase Flow", "Numerical Simulations", "OpenFOAM", "CFD", "Finite volume method", "Baseline model", "Multi-field two-fluid model", "Eulerian-Eulerian model", "Momentum interpolation", "Partial elimination algorithm", "Free Surface" ], "pub_id": "32194", "language": "eng", "description": "<p>The HZDR multiphase addon contains additional code for the open-source CFD software OpenFOAM, released by <a href=\"http://www.openfoam.org\">The OpenFOAM Foundation</a>. The developments are dedicated to the numerical simulation of multiphase flows, in particular to the multi-field two-fluid model (Euler-Euler method). Within the OpenFOAM library the multiphaseEulerFoam framework is used for this type of simulation. The addon contains a modified multiphaseEulerFoam named <em>HZDRmultiphaseEulerFoam</em> with the full support of the HZDR baseline model set for polydisperse bubbly flows according to Liao et al. (<a href=\"https://doi.org/10.1016/j.ces.2019.03.007\">Chem Eng Sci, 2019, Vol. 202, 55-69</a>). In addition a solver dedicated to a hybrid modelling approach (dispersed and resolved interfaces, Meller et al., <a href=\"https://doi.org/10.1002/fld.4907\">Int J Numer Meth Fluids. 2021, Vol. 93, 748-773</a>) named <em>cipsaMultiphaseEulerFoam</em> is provided with the addon. This solver has an interface to the <em>multiphaseEulerFoam</em> framework and utilizes all available interfacial models of it.</p>\n\n<p><strong>General enhancements</strong></p>\n\n<ul>\n\t<li>modified turbulent wall functions of Menter according to Rzehak and Kriebitzsch (<a href=\"http://dx.doi.org/10.1016/j.ijmultiphaseflow.2014.09.005\">Int J Multiphase Flow, 2015, Vol. 68, 135-152</a>)</li>\n\t<li>dynamic time step adjustment via PID controller</li>\n</ul>\n\n<p><strong>HZDRmultiphaseEulerFoam</strong></p>\n\n<ul>\n\t<li>bubble induced turbulence model of Ma et al. (<a href=\"https://doi.org/10.1103/PhysRevFluids.2.034301\">Phys Rev Fluids, 2017, Vol. 2, 034301</a>)</li>\n\t<li>drag model of Ishii and Zuber (<a href=\"https://doi.org/10.1002/aic.690250513\">AIChE Journal, 1979, Vol. 25, 843-855</a>) without correction for swarm and/or viscous effects</li>\n\t<li>wall lubrication of Hosokawa et al. (<a href=\"https://doi.org/10.1115/FEDSM2002-31148\">ASME Joint US-European Fluids Engineering Division Conference, 2002</a>)</li>\n\t<li>additional breakup and coalescence models for class method according to Liao et al. (<a href=\"https://doi.org/10.1016/j.ces.2014.09.042\">Chem Eng Sci, 2015, Vol. 122, 336-349</a>)</li>\n\t<li>degassing boundary condition (fvOption)</li>\n\t<li>lift force correlation of Hessenkemper et al. (<a href=\"https://doi.org/10.1016/j.ijmultiphaseflow.2021.103587\">Int J Multiphase Flow, 2021, Vol. 138, 103587</a>)</li>\n\t<li>aspect ratio correlation of Ziegenhein and Lucas (<a href=\"https://doi.org/10.1016/j.expthermflusci.2017.03.009\">Exp. Therm. Fluid Sci., 2017, Vol. 85, 248–256</a>)</li>\n\t<li>real pressure treatment via explicit turbulent normal stress according to Rzehak et al. (<a href=\"https://doi.org/10.1016/j.nucengdes.2021.111079\">Nucl Eng Des., 2021, Vol. 374, 111079</a>)</li>\n\t<li>configuration files and tutorials for easy setup of baseline cases</li>\n</ul>\n\n<p><strong>cipsaMultiphaseEulerFoam</strong></p>\n\n<ul>\n\t<li>morphology adaptive modelling framework for predicting dispersed and resolved interfaces based on Eulerian multi-field two-fluid model</li>\n\t<li>compact momentum interpolation method according to Cubero et al. (<a href=\"https://doi.org/10.1016/j.compchemeng.2013.12.002\">Comput Chem Eng, 2014, Vol. 62, 96-107</a>), including virtual mass</li>\n\t<li>numerical drag according to Strubelj and Tiselj (<a href=\"https://doi.org/10.1002/nme.2978\">Int J Numer Methods Eng, 2011, Vol. 85, 575-590</a>) to describe resolved interfaces in a volume-of-fluid like manner</li>\n\t<li>n-phase partial elimination algorithm for momentum equations to resolve strong phase coupling (Meller et al., <a href=\"https://doi.org/10.1002/fld.4907\">Int J Numer Meth Fluids. 2021, Vol. 93, 748-773</a>)</li>\n\t<li>free surface turbulence damping for k-ω SST (symmetric and asymmetric damping, Frederix et al., <a href=\"https://doi.org/10.1016/j.nucengdes.2018.04.010\"> Nucl Eng Des, 2018, Vol. 333, 122-130</a>)</li>\n\t<li>sub-grid scale modelling framework:\n\t<ul>\n\t\t<li>additional LES models for the unclosed convective sub-grid scale term</li>\n\t\t<li>closure models for sub-grid surface tension term</li>\n\t</ul>\n\t</li>\n\t<li>configuration files and tutorials for easy setup of hybrid cases</li>\n</ul>", "references": [ "Meller, R., Schlegel, F., & Lucas, D. (2020). Basic verification of a numerical framework applied to a morphology adaptive multifield two\u2010fluid model considering bubble motions. International Journal for Numerical Methods in Fluids." ], "doc_id": "1", "license": { "id": "GPL-3.0-only" }, "publication_date": "2021-01-26", "communities": [ { "id": "energy" }, { "id": "fwd" }, { "id": "hzdr" }, { "id": "rodare" } ], "contributors": [ { "type": "Other", "affiliation": "Eidgen\u00f6ssische Technische Hochschule Z\u00fcrich, Swizerland", "name": "Couteau, Arthur" }, { "type": "Other", "affiliation": "Faculty of Engineering and Physical Sciences, University of Leeds, United Kingdom", "name": "Colombo, Marco" }, { "type": "Other", "affiliation": "CADFEM GmbH, Germany", "name": "Kriebitzsch, Sebastian" }, { "type": "Other", "affiliation": "Technische Universit\u00e4t Dresden, Germany", "name": "Parekh, Jigar" } ], "access_right_category": "success" }, "doi": "10.14278/rodare.896", "created": "2021-03-26T09:51:34.182986+00:00", "id": 896, "links": { "badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.896.svg", "doi": "https://doi.org/10.14278/rodare.896", "conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.767.svg", "conceptdoi": "https://doi.org/10.14278/rodare.767", "bucket": "https://rodare.hzdr.de/api/files/721eee10-c5e5-4f55-844c-c8f800ec70a5", "html": "https://rodare.hzdr.de/record/896", "latest": "https://rodare.hzdr.de/api/records/896", "latest_html": "https://rodare.hzdr.de/record/896" }, "revision": 2, "conceptdoi": "10.14278/rodare.767", "conceptrecid": "767" }
All versions | This version | |
---|---|---|
Views | 523 | 61 |
Downloads | 139 | 15 |
Data volume | 3.4 GB | 283.5 MB |
Unique views | 335 | 51 |
Unique downloads | 69 | 10 |