There is a newer version of this record available.

Software Open Access

Multiphase Code Repository by HZDR for OpenFOAM Foundation Software

Schlegel, Fabian; Bilde, Kasper Gram; Draw, Mazen; Evdokimov, Ilya; Hänsch, Susann; Kamble, Vikrant Vinayak; Khan, Haris; Krull, Benjamin; Lehnigk, Ronald; Li, Jiadong; Lyu, Hongmei; Meller, Richard; Petelin, Gasper; Kota, Sesi Preetam; Tekavcic, Matej

Other(s)
Couteau, Arthur; Colombo, Marco; Haßlberger, Josef; Kriebitzsch, Sebastian; Kumaresh, Pramodh; Parekh, Jigar; Zhang, Tingting; Wang, Chih-Ta; Wang, Lisong

The Multiphase Code Repository by HZDR for OpenFOAM Foundation Software is a software publication released by Helmholtz-Zentrum Dresden-Rossendorf according to the FAIR principles (Findability, Accessibility, Interoperability, and Reuseability). It contains experimental research work for the open-source software released by The OpenFOAM Foundation. The developments are dedicated to the numerical simulation of multiphase flows, in particular to the multi-field two-fluid model (Euler-Euler method).

Acknowledgement: OpenFOAM(R) is a registered trade mark of OpenCFD Limited, producer and distributor of the OpenFOAM(R) software via www.openfoam.com. The Multiphase Code Repository by HZDR for OpenFOAM Foundation Software is not compatible with the software released by OpenCFD Limited, but is based on the software released by the OpenFOAM Foundation via www.openfoam.org

Highlights of the Multiphase Code Repository by HZDR

  • HZDR Baseline Model: addonMultiphaseEuler solver with full support of the HZDR baseline model set for polydisperse bubbly flows, including configuration files and tutorials for simplified setup of Baseline cases (Hänsch et al., 2021).
  • Population Balance Modelling: A GPU-accelerated population balance method according to Petelin et al. (2021).
  • Morphology-adaptive Multifield Two-fluid Model (MultiMorph): cipsaMultiphaseEuler solver featuring a morphology-adaptive modelling approach (dispersed and resolved interfaces, Meller et al., 2021) with an interface to the multiphaseEuler framework to utilise all available interfacial models, and configuration files and tutorials for easy setup of cases with the MultiMorph Model.
  • more ...

This work was supported by the Helmholtz European Partnering Program in the project "Crossing borders and scales (Crossing)".
Files (120.5 MB)
Name Size
CHANGELOG.md
md5:2ed237c50ca1a5d149cabf681d2139b8
20.0 kB Download
INSTALLATION.md
md5:79ff19421523e3609da5fbc2d5eb2e2f
15.5 kB Download
multiphase-code-repository-by-hzdr-10-s.2-hzdr.3.tgz
md5:99733e4195f5cf75d1e98bb7076428f4
1.8 MB Download
OpenFOAM-dev.tgz
md5:e90d8f7b14aa480c63ed0acf0d8d2253
105.9 MB Download
README.md
md5:689d330f7b4fa52b9a914ff92aea85c4
8.6 kB Download
ThirdParty-dev.tgz
md5:233d6f9b28f0c84af8dd09ccb78d15f5
12.7 MB Download
  • Hänsch, S., Evdokimov, I., Schlegel, F., & Lucas, D. (2021). A workflow for the sustainable development of closure models for bubbly flows. Chemical Engineering Science, 116807.

  • Meller, R., Schlegel, F., & Lucas, D. (2021). Basic verification of a numerical framework applied to a morphology adaptive multifield two‐fluid model considering bubble motions. International Journal for Numerical Methods in Fluids, 93(3), 748-773.

  • Meller, R., Tekavcic, M., Krull, B., & Schlegel, F. (2023). Momentum exchange modeling for coarsely resolved interfaces in a multifield two-fluid model. International Journal for Numerical Methods in Fluids, 95(9), 1521-1545.

  • Petelin, G., Lehnigk, R., Kelling, J., Papa, G., & Schlegel, F. (2021). GPU-based Accelerated Computation of Coalescence and Breakup Frequencies for Polydisperse Bubbly Flows. 30th International Conference Nuclear Energy for New Europe (NENE2021), Bled, Slovenia.

15,376
4,048
views
downloads
All versions This version
Views 15,376180
Downloads 4,04897
Data volume 62.1 GB1.3 GB
Unique views 9,679131
Unique downloads 2,31868

Share

Cite as