There is a newer version of this record available.

Software Open Access

Multiphase Code Repository by HZDR for OpenFOAM Foundation Software

Schlegel, Fabian; Bilde, Kasper Gram; Draw, Mazen; Evdokimov, Ilya; Hänsch, Susann; Kamble, Vikrant Vinayak; Khan, Haris; Krull, Benjamin; Lehnigk, Ronald; Li, Jiadong; Lyu, Hongmei; Meller, Richard; Petelin, Gašper; Kota, Sesi Preetam; Tekavčič, Matej

Other(s)
Couteau, Arthur; Colombo, Marco; Haßlberger, Josef; Kriebitzsch, Sebastian; Kumaresh, Pramodh; Parekh, Jigar; Zhang, Tingting; Wang, Chih-Ta; Wang, Lisong

The Multiphase Code Repository by HZDR for OpenFOAM Foundation Software is a software publication released by Helmholtz-Zentrum Dresden-Rossendorf according to the FAIR principles (Findability, Accessibility, Interoperability, and Reuseability). It contains experimental research work for the open-source software released by The OpenFOAM Foundation. The developments are dedicated to the numerical simulation of multiphase flows, in particular to the multi-field two-fluid model (Euler-Euler method).

Acknowledgement: OpenFOAM(R) is a registered trade mark of OpenCFD Limited, producer and distributor of the OpenFOAM(R) software via www.openfoam.com. The Multiphase Code Repository by HZDR for OpenFOAM Foundation Software is not compatible with the software released by OpenCFD Limited, but is based on the software released by the OpenFOAM Foundation via www.openfoam.org

Highlights of the Multiphase Code Repository by HZDR

  • HZDR Baseline Model: addonMultiphaseEuler solver with full support of the HZDR baseline model set for polydisperse bubbly flows, including configuration files and tutorials for simplified setup of Baseline cases (Hänsch et al., 2021).
  • Population Balance Modelling: A GPU-accelerated population balance method according to Petelin et al. (2021).
  • Morphology-adaptive Multifield Two-fluid Model (MultiMorph): cipsaMultiphaseEuler solver featuring a morphology-adaptive modelling approach (dispersed and resolved interfaces, Meller et al., 2021) with an interface to the multiphaseEuler framework to utilise all available interfacial models, and configuration files and tutorials for easy setup of cases with the MultiMorph Model.
  • more ...

This work was supported by the Helmholtz European Partnering Program in the project "Crossing borders and scales (Crossing)".
Files (119.5 MB)
Name Size
CHANGELOG.md
md5:ece5aeb7311f013c58056df7c4735dae
19.6 kB Download
INSTALLATION.md
md5:a54354c57554fe5d046a75337dcbdf9e
15.5 kB Download
multiphase-code-repository-by-hzdr-10-s.2-hzdr.2.tgz
md5:ce926cce5cf751874bc1c0b97caa3c7a
791.4 kB Download
OpenFOAM-dev.tgz
md5:eccbc4aca462f634a08947c830e7ac01
105.9 MB Download
README.md
md5:730f52e9f23d54f354356090b402817d
8.6 kB Download
ThirdParty-dev.tgz
md5:975ddd2c14923ed047a92ef20af2d0ef
12.7 MB Download
  • Hänsch, S., Evdokimov, I., Schlegel, F., & Lucas, D. (2021). A workflow for the sustainable development of closure models for bubbly flows. Chemical Engineering Science, 116807.

  • Meller, R., Schlegel, F., & Lucas, D. (2021). Basic verification of a numerical framework applied to a morphology adaptive multifield two‐fluid model considering bubble motions. International Journal for Numerical Methods in Fluids, 93(3), 748-773.

  • Meller, R., Tekavcic, M., Krull, B., & Schlegel, F. (2023). Momentum exchange modeling for coarsely resolved interfaces in a multifield two-fluid model. International Journal for Numerical Methods in Fluids, 95(9), 1521-1545.

  • Petelin, G., Lehnigk, R., Kelling, J., Papa, G., & Schlegel, F. (2021). GPU-based Accelerated Computation of Coalescence and Breakup Frequencies for Polydisperse Bubbly Flows. 30th International Conference Nuclear Energy for New Europe (NENE2021), Bled, Slovenia.

14,472
3,754
views
downloads
All versions This version
Views 14,472250
Downloads 3,75466
Data volume 59.5 GB1.0 GB
Unique views 9,249185
Unique downloads 2,11534

Share

Cite as