Dataset Open Access
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nmm##2200000uu#4500</leader>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="o">oai:rodare.hzdr.de:3994</subfield>
<subfield code="p">openaire_data</subfield>
<subfield code="p">user-rodare</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a"><p>This repository contains the dataset supporting the paper &quot;Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations&quot; by Karan Shah and Attila Cangi. It comprises time-dependent density functional theory (TDDFT) simulations of one-dimensional diatomic molecules under laser excitation. The data is used to train and evaluate autoregressive Fourier Neural Operator (FNO) models that serve as ML&nbsp;time propagators for electron density evolution.</p></subfield>
</datafield>
<controlfield tag="001">3994</controlfield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Cangi, Attila</subfield>
<subfield code="u">CASUS, HZDR</subfield>
<subfield code="0">(orcid)0000-0001-9162-262X</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-rodare</subfield>
</datafield>
<controlfield tag="005">20250924094454.0</controlfield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Shah, Karan</subfield>
<subfield code="u">CASUS, HZDR</subfield>
<subfield code="0">(orcid)0000-0002-5480-2880</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Dataset for Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations</subfield>
</datafield>
<datafield tag="773" ind1=" " ind2=" ">
<subfield code="a">10.48550/arXiv.2508.16554</subfield>
<subfield code="i">isSupplementTo</subfield>
<subfield code="n">doi</subfield>
</datafield>
<datafield tag="773" ind1=" " ind2=" ">
<subfield code="a">https://www.hzdr.de/publications/Publ-41882</subfield>
<subfield code="i">isIdenticalTo</subfield>
<subfield code="n">url</subfield>
</datafield>
<datafield tag="773" ind1=" " ind2=" ">
<subfield code="a">10.14278/rodare.3993</subfield>
<subfield code="i">isVersionOf</subfield>
<subfield code="n">doi</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.14278/rodare.3994</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">Physics-informed machine learning</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">TDDFT</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">RT-TDDFT</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">Fourier Neural Operators</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
<subfield code="a">Creative Commons Attribution 4.0 International</subfield>
</datafield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="s">872371405</subfield>
<subfield code="u">https://rodare.hzdr.de/record/3994/files/Archive.zip</subfield>
<subfield code="z">md5:add8ba22592192c879fb63ac4b46f1b7</subfield>
</datafield>
<datafield tag="041" ind1=" " ind2=" ">
<subfield code="a">eng</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">dataset</subfield>
</datafield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2025-09-24</subfield>
</datafield>
</record>
| All versions | This version | |
|---|---|---|
| Views | 370 | 113 |
| Downloads | 13 | 5 |
| Data volume | 11.3 GB | 4.4 GB |
| Unique views | 288 | 95 |
| Unique downloads | 11 | 5 |