There is a newer version of this record available.

Dataset Open Access

Dataset for Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations

Shah, Karan; Cangi, Attila


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.14278/rodare.3994</identifier>
  <creators>
    <creator>
      <creatorName>Shah, Karan</creatorName>
      <givenName>Karan</givenName>
      <familyName>Shah</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5480-2880</nameIdentifier>
      <affiliation>CASUS, HZDR</affiliation>
    </creator>
    <creator>
      <creatorName>Cangi, Attila</creatorName>
      <givenName>Attila</givenName>
      <familyName>Cangi</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9162-262X</nameIdentifier>
      <affiliation>CASUS, HZDR</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Dataset for Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations</title>
  </titles>
  <publisher>Rodare</publisher>
  <publicationYear>2025</publicationYear>
  <subjects>
    <subject>Physics-informed machine learning</subject>
    <subject>TDDFT</subject>
    <subject>RT-TDDFT</subject>
    <subject>Fourier Neural Operators</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2025-09-24</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/3994</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsSupplementTo">10.48550/arXiv.2508.16554</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-41882</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.3993</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
  </relatedIdentifiers>
  <version>2025_09_24</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This repository contains the dataset supporting the paper &amp;quot;Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations&amp;quot; by Karan Shah and Attila Cangi. It comprises time-dependent density functional theory (TDDFT) simulations of one-dimensional diatomic molecules under laser excitation. The data is used to train and evaluate autoregressive Fourier Neural Operator (FNO) models that serve as ML&amp;nbsp;time propagators for electron density evolution.&lt;/p&gt;</description>
  </descriptions>
</resource>
370
13
views
downloads
All versions This version
Views 370113
Downloads 135
Data volume 11.3 GB4.4 GB
Unique views 28895
Unique downloads 115

Share

Cite as