Dataset Open Access
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="DOI">10.14278/rodare.3994</identifier>
<creators>
<creator>
<creatorName>Shah, Karan</creatorName>
<givenName>Karan</givenName>
<familyName>Shah</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5480-2880</nameIdentifier>
<affiliation>CASUS, HZDR</affiliation>
</creator>
<creator>
<creatorName>Cangi, Attila</creatorName>
<givenName>Attila</givenName>
<familyName>Cangi</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9162-262X</nameIdentifier>
<affiliation>CASUS, HZDR</affiliation>
</creator>
</creators>
<titles>
<title>Dataset for Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations</title>
</titles>
<publisher>Rodare</publisher>
<publicationYear>2025</publicationYear>
<subjects>
<subject>Physics-informed machine learning</subject>
<subject>TDDFT</subject>
<subject>RT-TDDFT</subject>
<subject>Fourier Neural Operators</subject>
</subjects>
<dates>
<date dateType="Issued">2025-09-24</date>
</dates>
<language>en</language>
<resourceType resourceTypeGeneral="Dataset"/>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/3994</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsSupplementTo">10.48550/arXiv.2508.16554</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-41882</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.3993</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
</relatedIdentifiers>
<version>2025_09_24</version>
<rightsList>
<rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>This repository contains the dataset supporting the paper &quot;Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations&quot; by Karan Shah and Attila Cangi. It comprises time-dependent density functional theory (TDDFT) simulations of one-dimensional diatomic molecules under laser excitation. The data is used to train and evaluate autoregressive Fourier Neural Operator (FNO) models that serve as ML&nbsp;time propagators for electron density evolution.</p></description>
</descriptions>
</resource>
| All versions | This version | |
|---|---|---|
| Views | 370 | 113 |
| Downloads | 13 | 5 |
| Data volume | 11.3 GB | 4.4 GB |
| Unique views | 288 | 95 |
| Unique downloads | 11 | 5 |