There is a newer version of this record available.

Dataset Open Access

Dataset for Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations

Shah, Karan; Cangi, Attila


JSON Export

{
  "updated": "2025-09-24T09:44:54.827543+00:00", 
  "doi": "10.14278/rodare.3994", 
  "files": [
    {
      "type": "zip", 
      "size": 872371405, 
      "bucket": "566b0bde-31f5-43c5-b2ae-e5c1bd32ed58", 
      "checksum": "md5:add8ba22592192c879fb63ac4b46f1b7", 
      "key": "Archive.zip", 
      "links": {
        "self": "https://rodare.hzdr.de/api/files/566b0bde-31f5-43c5-b2ae-e5c1bd32ed58/Archive.zip"
      }
    }
  ], 
  "owners": [
    486
  ], 
  "created": "2025-09-24T09:05:57.615164+00:00", 
  "stats": {
    "volume": 4361857025.0, 
    "unique_downloads": 5.0, 
    "version_unique_downloads": 11.0, 
    "unique_views": 95.0, 
    "downloads": 5.0, 
    "version_unique_views": 288.0, 
    "version_views": 370.0, 
    "version_downloads": 13.0, 
    "version_volume": 11340787169.0, 
    "views": 113.0
  }, 
  "id": 3994, 
  "metadata": {
    "access_right_category": "success", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "language": "eng", 
    "access_right": "open", 
    "pub_id": "41882", 
    "resource_type": {
      "title": "Dataset", 
      "type": "dataset"
    }, 
    "keywords": [
      "Physics-informed machine learning", 
      "TDDFT", 
      "RT-TDDFT", 
      "Fourier Neural Operators"
    ], 
    "doc_id": "1", 
    "related_identifiers": [
      {
        "relation": "isSupplementTo", 
        "scheme": "doi", 
        "identifier": "10.48550/arXiv.2508.16554"
      }, 
      {
        "relation": "isIdenticalTo", 
        "scheme": "url", 
        "identifier": "https://www.hzdr.de/publications/Publ-41882"
      }, 
      {
        "relation": "isVersionOf", 
        "scheme": "doi", 
        "identifier": "10.14278/rodare.3993"
      }
    ], 
    "creators": [
      {
        "affiliation": "CASUS, HZDR", 
        "orcid": "0000-0002-5480-2880", 
        "name": "Shah, Karan"
      }, 
      {
        "affiliation": "CASUS, HZDR", 
        "orcid": "0000-0001-9162-262X", 
        "name": "Cangi, Attila"
      }
    ], 
    "version": "2025_09_24", 
    "title": "Dataset for Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations", 
    "description": "<p>This repository contains the dataset supporting the paper &quot;Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations&quot; by Karan Shah and Attila Cangi. It comprises time-dependent density functional theory (TDDFT) simulations of one-dimensional diatomic molecules under laser excitation. The data is used to train and evaluate autoregressive Fourier Neural Operator (FNO) models that serve as ML&nbsp;time propagators for electron density evolution.</p>", 
    "relations": {
      "version": [
        {
          "count": 2, 
          "is_last": false, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3993"
          }, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3995"
          }, 
          "index": 0
        }
      ]
    }, 
    "doi": "10.14278/rodare.3994", 
    "communities": [
      {
        "id": "rodare"
      }
    ], 
    "publication_date": "2025-09-24"
  }, 
  "conceptdoi": "10.14278/rodare.3993", 
  "conceptrecid": "3993", 
  "links": {
    "badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.3994.svg", 
    "doi": "https://doi.org/10.14278/rodare.3994", 
    "conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.3993.svg", 
    "conceptdoi": "https://doi.org/10.14278/rodare.3993", 
    "bucket": "https://rodare.hzdr.de/api/files/566b0bde-31f5-43c5-b2ae-e5c1bd32ed58", 
    "html": "https://rodare.hzdr.de/record/3994", 
    "latest": "https://rodare.hzdr.de/api/records/3995", 
    "latest_html": "https://rodare.hzdr.de/record/3995"
  }, 
  "revision": 8
}
370
13
views
downloads
All versions This version
Views 370113
Downloads 135
Data volume 11.3 GB4.4 GB
Unique views 28895
Unique downloads 115

Share

Cite as