Dataset Open Access
{
"updated": "2025-09-24T09:44:54.827543+00:00",
"doi": "10.14278/rodare.3994",
"files": [
{
"type": "zip",
"size": 872371405,
"bucket": "566b0bde-31f5-43c5-b2ae-e5c1bd32ed58",
"checksum": "md5:add8ba22592192c879fb63ac4b46f1b7",
"key": "Archive.zip",
"links": {
"self": "https://rodare.hzdr.de/api/files/566b0bde-31f5-43c5-b2ae-e5c1bd32ed58/Archive.zip"
}
}
],
"owners": [
486
],
"created": "2025-09-24T09:05:57.615164+00:00",
"stats": {
"volume": 4361857025.0,
"unique_downloads": 5.0,
"version_unique_downloads": 11.0,
"unique_views": 95.0,
"downloads": 5.0,
"version_unique_views": 288.0,
"version_views": 370.0,
"version_downloads": 13.0,
"version_volume": 11340787169.0,
"views": 113.0
},
"id": 3994,
"metadata": {
"access_right_category": "success",
"license": {
"id": "CC-BY-4.0"
},
"language": "eng",
"access_right": "open",
"pub_id": "41882",
"resource_type": {
"title": "Dataset",
"type": "dataset"
},
"keywords": [
"Physics-informed machine learning",
"TDDFT",
"RT-TDDFT",
"Fourier Neural Operators"
],
"doc_id": "1",
"related_identifiers": [
{
"relation": "isSupplementTo",
"scheme": "doi",
"identifier": "10.48550/arXiv.2508.16554"
},
{
"relation": "isIdenticalTo",
"scheme": "url",
"identifier": "https://www.hzdr.de/publications/Publ-41882"
},
{
"relation": "isVersionOf",
"scheme": "doi",
"identifier": "10.14278/rodare.3993"
}
],
"creators": [
{
"affiliation": "CASUS, HZDR",
"orcid": "0000-0002-5480-2880",
"name": "Shah, Karan"
},
{
"affiliation": "CASUS, HZDR",
"orcid": "0000-0001-9162-262X",
"name": "Cangi, Attila"
}
],
"version": "2025_09_24",
"title": "Dataset for Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations",
"description": "<p>This repository contains the dataset supporting the paper "Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations" by Karan Shah and Attila Cangi. It comprises time-dependent density functional theory (TDDFT) simulations of one-dimensional diatomic molecules under laser excitation. The data is used to train and evaluate autoregressive Fourier Neural Operator (FNO) models that serve as ML time propagators for electron density evolution.</p>",
"relations": {
"version": [
{
"count": 2,
"is_last": false,
"parent": {
"pid_type": "recid",
"pid_value": "3993"
},
"last_child": {
"pid_type": "recid",
"pid_value": "3995"
},
"index": 0
}
]
},
"doi": "10.14278/rodare.3994",
"communities": [
{
"id": "rodare"
}
],
"publication_date": "2025-09-24"
},
"conceptdoi": "10.14278/rodare.3993",
"conceptrecid": "3993",
"links": {
"badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.3994.svg",
"doi": "https://doi.org/10.14278/rodare.3994",
"conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.3993.svg",
"conceptdoi": "https://doi.org/10.14278/rodare.3993",
"bucket": "https://rodare.hzdr.de/api/files/566b0bde-31f5-43c5-b2ae-e5c1bd32ed58",
"html": "https://rodare.hzdr.de/record/3994",
"latest": "https://rodare.hzdr.de/api/records/3995",
"latest_html": "https://rodare.hzdr.de/record/3995"
},
"revision": 8
}
| All versions | This version | |
|---|---|---|
| Views | 370 | 113 |
| Downloads | 13 | 5 |
| Data volume | 11.3 GB | 4.4 GB |
| Unique views | 288 | 95 |
| Unique downloads | 11 | 5 |