Dataset Open Access
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Shah, Karan</dc:creator> <dc:creator>Cangi, Attila</dc:creator> <dc:date>2025-09-24</dc:date> <dc:description>This repository contains the dataset supporting the paper "Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations" by Karan Shah and Attila Cangi. It comprises time-dependent density functional theory (TDDFT) simulations of one-dimensional diatomic molecules under laser excitation. The data is used to train and evaluate autoregressive Fourier Neural Operator (FNO) models that serve as ML time propagators for electron density evolution.</dc:description> <dc:identifier>https://rodare.hzdr.de/record/3994</dc:identifier> <dc:identifier>10.14278/rodare.3994</dc:identifier> <dc:identifier>oai:rodare.hzdr.de:3994</dc:identifier> <dc:language>eng</dc:language> <dc:relation>doi:10.48550/arXiv.2508.16554</dc:relation> <dc:relation>url:https://www.hzdr.de/publications/Publ-41882</dc:relation> <dc:relation>doi:10.14278/rodare.3993</dc:relation> <dc:relation>url:https://rodare.hzdr.de/communities/rodare</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:subject>Physics-informed machine learning</dc:subject> <dc:subject>TDDFT</dc:subject> <dc:subject>RT-TDDFT</dc:subject> <dc:subject>Fourier Neural Operators</dc:subject> <dc:title>Dataset for Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations</dc:title> <dc:type>info:eu-repo/semantics/other</dc:type> <dc:type>dataset</dc:type> </oai_dc:dc>
| All versions | This version | |
|---|---|---|
| Views | 370 | 113 |
| Downloads | 13 | 5 |
| Data volume | 11.3 GB | 4.4 GB |
| Unique views | 288 | 95 |
| Unique downloads | 11 | 5 |