Dataset Open Access
{
"datePublished": "2025-09-24",
"@id": "https://doi.org/10.14278/rodare.3994",
"version": "2025_09_24",
"url": "https://rodare.hzdr.de/record/3994",
"name": "Dataset for Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations",
"keywords": [
"Physics-informed machine learning",
"TDDFT",
"RT-TDDFT",
"Fourier Neural Operators"
],
"license": "https://creativecommons.org/licenses/by/4.0/legalcode",
"@type": "Dataset",
"@context": "https://schema.org/",
"distribution": [
{
"@type": "DataDownload",
"contentUrl": "https://rodare.hzdr.de/api/files/566b0bde-31f5-43c5-b2ae-e5c1bd32ed58/Archive.zip",
"fileFormat": "zip"
}
],
"identifier": "https://doi.org/10.14278/rodare.3994",
"description": "<p>This repository contains the dataset supporting the paper "Machine Learning Time Propagators for Time-Dependent Density Functional Theory Simulations" by Karan Shah and Attila Cangi. It comprises time-dependent density functional theory (TDDFT) simulations of one-dimensional diatomic molecules under laser excitation. The data is used to train and evaluate autoregressive Fourier Neural Operator (FNO) models that serve as ML time propagators for electron density evolution.</p>",
"sameAs": [
"https://www.hzdr.de/publications/Publ-41882"
],
"inLanguage": {
"name": "English",
"@type": "Language",
"alternateName": "eng"
},
"creator": [
{
"name": "Shah, Karan",
"@id": "https://orcid.org/0000-0002-5480-2880",
"@type": "Person",
"affiliation": "CASUS, HZDR"
},
{
"name": "Cangi, Attila",
"@id": "https://orcid.org/0000-0001-9162-262X",
"@type": "Person",
"affiliation": "CASUS, HZDR"
}
]
}
| All versions | This version | |
|---|---|---|
| Views | 370 | 113 |
| Downloads | 13 | 5 |
| Data volume | 11.3 GB | 4.4 GB |
| Unique views | 288 | 95 |
| Unique downloads | 11 | 5 |