There is a newer version of this record available.

Dataset Open Access

Data publication: A deep-learning-based surrogate model for Monte-Carlo simulations of the linear energy transfer in primary brain tumor patients treated with proton-beam radiotherapy

Starke, Sebastian; Kieslich, Aaron Markus; Palkowitsch, Martina; Hennings, Fabian; Troost, Esther Gera Cornelia; Krause, Mechthild; Bensberg, Jona; Hahn, Christian; Heinzelmann, Feline; Bäumer, Christian; Lühr, Armin; Timmermann, Beate; Löck, Steffen


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Starke, Sebastian</dc:creator>
  <dc:creator>Kieslich, Aaron Markus</dc:creator>
  <dc:creator>Palkowitsch, Martina</dc:creator>
  <dc:creator>Hennings, Fabian</dc:creator>
  <dc:creator>Troost, Esther Gera Cornelia</dc:creator>
  <dc:creator>Krause, Mechthild</dc:creator>
  <dc:creator>Bensberg, Jona</dc:creator>
  <dc:creator>Hahn, Christian</dc:creator>
  <dc:creator>Heinzelmann, Feline</dc:creator>
  <dc:creator>Bäumer, Christian</dc:creator>
  <dc:creator>Lühr, Armin</dc:creator>
  <dc:creator>Timmermann, Beate</dc:creator>
  <dc:creator>Löck, Steffen</dc:creator>
  <dc:date>2024-03-15</dc:date>
  <dc:description>This repository contains the outputs and result data of our deep-learning-based experiments for the approximation of Monte-Carlo-simulated linear energy transfer distributions, which build the foundation for the corresponding article.

The Pytorch checkpoint of our finally chosen SegResNet architecture trained on the UPTD dose distributions is located at dd_pbs/Dose-LETd/clip_let_below_0.04/segresnet/all_trainvalid_data/training/lightning_logs/version_6358843/checkpoints/last.ckpt.

 

Moreover, we provide an exemplary data sample from a water phantom for trying our analysis pipeline.</dc:description>
  <dc:identifier>https://rodare.hzdr.de/record/2764</dc:identifier>
  <dc:identifier>10.14278/rodare.2764</dc:identifier>
  <dc:identifier>oai:rodare.hzdr.de:2764</dc:identifier>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-38860</dc:relation>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-38858</dc:relation>
  <dc:relation>doi:10.14278/rodare.2763</dc:relation>
  <dc:relation>url:https://rodare.hzdr.de/communities/oncoray</dc:relation>
  <dc:relation>url:https://rodare.hzdr.de/communities/rodare</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>proton-beam therapy</dc:subject>
  <dc:subject>relative biological effectiveness</dc:subject>
  <dc:subject>linear energy transfer</dc:subject>
  <dc:subject>NTCP models</dc:subject>
  <dc:subject>deep learning</dc:subject>
  <dc:subject>brain tumor</dc:subject>
  <dc:title>Data publication: A deep-learning-based surrogate model for Monte-Carlo simulations of the linear energy transfer in primary brain tumor patients treated with proton-beam radiotherapy</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>dataset</dc:type>
</oai_dc:dc>
659
29
views
downloads
All versions This version
Views 659428
Downloads 2925
Data volume 6.1 GB5.6 GB
Unique views 544362
Unique downloads 2422

Share

Cite as