Dataset Open Access
Starke, Sebastian; Kieslich, Aaron Markus; Palkowitsch, Martina; Hennings, Fabian; Troost, Esther Gera Cornelia; Krause, Mechthild; Bensberg, Jona; Hahn, Christian; Heinzelmann, Feline; Bäumer, Christian; Lühr, Armin; Timmermann, Beate; Löck, Steffen
{ "owners": [ 163 ], "created": "2024-04-24T08:55:08.151330+00:00", "revision": 7, "doi": "10.14278/rodare.2764", "links": { "badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.2764.svg", "doi": "https://doi.org/10.14278/rodare.2764", "conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.2763.svg", "conceptdoi": "https://doi.org/10.14278/rodare.2763", "bucket": "https://rodare.hzdr.de/api/files/cb0665ed-43e9-4f45-9c28-dcc3c860f3ac", "html": "https://rodare.hzdr.de/record/2764", "latest": "https://rodare.hzdr.de/api/records/3025", "latest_html": "https://rodare.hzdr.de/record/3025" }, "conceptdoi": "10.14278/rodare.2763", "id": 2764, "conceptrecid": "2763", "stats": { "volume": 5579584959.0, "unique_downloads": 22.0, "version_unique_downloads": 24.0, "unique_views": 362.0, "downloads": 25.0, "version_unique_views": 544.0, "version_views": 659.0, "version_downloads": 29.0, "version_volume": 6055640215.0, "views": 428.0 }, "files": [ { "bucket": "cb0665ed-43e9-4f45-9c28-dcc3c860f3ac", "links": { "self": "https://rodare.hzdr.de/api/files/cb0665ed-43e9-4f45-9c28-dcc3c860f3ac/analysis_data.zip" }, "key": "analysis_data.zip", "size": 342692235, "type": "zip", "checksum": "md5:d0b670f5cee1de6f117919f2e83d92f9" }, { "bucket": "cb0665ed-43e9-4f45-9c28-dcc3c860f3ac", "links": { "self": "https://rodare.hzdr.de/api/files/cb0665ed-43e9-4f45-9c28-dcc3c860f3ac/water_phantom.zip" }, "key": "water_phantom.zip", "size": 93715492, "type": "zip", "checksum": "md5:75ae4c12df1ec734429e041cf0d50182" } ], "metadata": { "related_identifiers": [ { "relation": "isIdenticalTo", "scheme": "url", "identifier": "https://www.hzdr.de/publications/Publ-38860" }, { "relation": "isReferencedBy", "scheme": "url", "identifier": "https://www.hzdr.de/publications/Publ-38858" }, { "relation": "isVersionOf", "scheme": "doi", "identifier": "10.14278/rodare.2763" } ], "doi": "10.14278/rodare.2764", "resource_type": { "title": "Dataset", "type": "dataset" }, "pub_id": "38860", "relations": { "version": [ { "parent": { "pid_type": "recid", "pid_value": "2763" }, "count": 2, "index": 0, "last_child": { "pid_type": "recid", "pid_value": "3025" }, "is_last": false } ] }, "creators": [ { "orcid": "0000-0001-5007-1868", "name": "Starke, Sebastian" }, { "name": "Kieslich, Aaron Markus" }, { "name": "Palkowitsch, Martina" }, { "name": "Hennings, Fabian" }, { "orcid": "0000-0001-9550-9050", "name": "Troost, Esther Gera Cornelia" }, { "orcid": "0000-0003-1776-9556", "name": "Krause, Mechthild" }, { "name": "Bensberg, Jona" }, { "name": "Hahn, Christian" }, { "name": "Heinzelmann, Feline" }, { "name": "B\u00e4umer, Christian" }, { "orcid": "0000-0002-9450-6859", "name": "L\u00fchr, Armin" }, { "name": "Timmermann, Beate" }, { "orcid": "0000-0002-7017-3738", "name": "L\u00f6ck, Steffen" } ], "access_right_category": "success", "description": "<p>This repository contains the outputs and result data of our deep-learning-based experiments for the approximation of Monte-Carlo-simulated linear energy transfer distributions, which build the foundation for the corresponding article.</p>\n\n<p>The Pytorch checkpoint of our finally chosen SegResNet architecture trained on the UPTD dose distributions is located at dd_pbs/Dose-LETd/clip_let_below_0.04/segresnet/all_trainvalid_data/training/lightning_logs/version_6358843/checkpoints/last.ckpt.</p>\n\n<p> </p>\n\n<p>Moreover, we provide an exemplary data sample from a water phantom for trying our analysis pipeline.</p>", "publication_date": "2024-03-15", "access_right": "open", "doc_id": "1", "license": { "id": "CC-BY-4.0" }, "communities": [ { "id": "oncoray" }, { "id": "rodare" } ], "title": "Data publication: A deep-learning-based surrogate model for Monte-Carlo simulations of the linear energy transfer in primary brain tumor patients treated with proton-beam radiotherapy", "keywords": [ "proton-beam therapy", "relative biological effectiveness", "linear energy transfer", "NTCP models", "deep learning", "brain tumor" ] }, "updated": "2024-08-14T11:53:28.185436+00:00" }
All versions | This version | |
---|---|---|
Views | 659 | 428 |
Downloads | 29 | 25 |
Data volume | 6.1 GB | 5.6 GB |
Unique views | 544 | 362 |
Unique downloads | 24 | 22 |