Dataset Open Access
Starke, Sebastian; Kieslich, Aaron Markus; Palkowitsch, Martina; Hennings, Fabian; Troost, Esther Gera Cornelia; Krause, Mechthild; Bensberg, Jona; Hahn, Christian; Heinzelmann, Feline; Bäumer, Christian; Lühr, Armin; Timmermann, Beate; Löck, Steffen
{ "issued": { "date-parts": [ [ 2024, 3, 15 ] ] }, "abstract": "<p>This repository contains the outputs and result data of our deep-learning-based experiments for the approximation of Monte-Carlo-simulated linear energy transfer distributions, which build the foundation for the corresponding article.</p>\n\n<p>The Pytorch checkpoint of our finally chosen SegResNet architecture trained on the UPTD dose distributions is located at dd_pbs/Dose-LETd/clip_let_below_0.04/segresnet/all_trainvalid_data/training/lightning_logs/version_6358843/checkpoints/last.ckpt.</p>\n\n<p> </p>\n\n<p>Moreover, we provide an exemplary data sample from a water phantom for trying our analysis pipeline.</p>", "DOI": "10.14278/rodare.2764", "id": "2764", "title": "Data publication: A deep-learning-based surrogate model for Monte-Carlo simulations of the linear energy transfer in primary brain tumor patients treated with proton-beam radiotherapy", "type": "dataset", "publisher": "Rodare", "author": [ { "family": "Starke, Sebastian" }, { "family": "Kieslich, Aaron Markus" }, { "family": "Palkowitsch, Martina" }, { "family": "Hennings, Fabian" }, { "family": "Troost, Esther Gera Cornelia" }, { "family": "Krause, Mechthild" }, { "family": "Bensberg, Jona" }, { "family": "Hahn, Christian" }, { "family": "Heinzelmann, Feline" }, { "family": "B\u00e4umer, Christian" }, { "family": "L\u00fchr, Armin" }, { "family": "Timmermann, Beate" }, { "family": "L\u00f6ck, Steffen" } ] }
All versions | This version | |
---|---|---|
Views | 659 | 428 |
Downloads | 29 | 25 |
Data volume | 6.1 GB | 5.6 GB |
Unique views | 544 | 362 |
Unique downloads | 24 | 22 |