Dataset Open Access
Starke, Sebastian;
Kieslich, Aaron Markus;
Palkowitsch, Martina;
Hennings, Fabian;
Troost, Esther Gera Cornelia;
Krause, Mechthild;
Bensberg, Jona;
Hahn, Christian;
Heinzelmann, Feline;
Bäumer, Christian;
Lühr, Armin;
Timmermann, Beate;
Löck, Steffen
{
"type": "dataset",
"DOI": "10.14278/rodare.2764",
"title": "Data publication: A deep-learning-based surrogate model for Monte-Carlo simulations of the linear energy transfer in primary brain tumor patients treated with proton-beam radiotherapy",
"abstract": "<p>This repository contains the outputs and result data of our deep-learning-based experiments for the approximation of Monte-Carlo-simulated linear energy transfer distributions, which build the foundation for the corresponding article.</p>\n\n<p>The Pytorch checkpoint of our finally chosen SegResNet architecture trained on the UPTD dose distributions is located at dd_pbs/Dose-LETd/clip_let_below_0.04/segresnet/all_trainvalid_data/training/lightning_logs/version_6358843/checkpoints/last.ckpt.</p>\n\n<p> </p>\n\n<p>Moreover, we provide an exemplary data sample from a water phantom for trying our analysis pipeline.</p>",
"publisher": "Rodare",
"author": [
{
"family": "Starke, Sebastian"
},
{
"family": "Kieslich, Aaron Markus"
},
{
"family": "Palkowitsch, Martina"
},
{
"family": "Hennings, Fabian"
},
{
"family": "Troost, Esther Gera Cornelia"
},
{
"family": "Krause, Mechthild"
},
{
"family": "Bensberg, Jona"
},
{
"family": "Hahn, Christian"
},
{
"family": "Heinzelmann, Feline"
},
{
"family": "B\u00e4umer, Christian"
},
{
"family": "L\u00fchr, Armin"
},
{
"family": "Timmermann, Beate"
},
{
"family": "L\u00f6ck, Steffen"
}
],
"id": "2764",
"issued": {
"date-parts": [
[
2024,
3,
15
]
]
}
}
| All versions | This version | |
|---|---|---|
| Views | 1,518 | 823 |
| Downloads | 54 | 34 |
| Data volume | 10.0 GB | 7.7 GB |
| Unique views | 1,205 | 677 |
| Unique downloads | 48 | 30 |