Dataset Open Access
Starke, Sebastian;
Kieslich, Aaron Markus;
Palkowitsch, Martina;
Hennings, Fabian;
Troost, Esther Gera Cornelia;
Krause, Mechthild;
Bensberg, Jona;
Hahn, Christian;
Heinzelmann, Feline;
Bäumer, Christian;
Lühr, Armin;
Timmermann, Beate;
Löck, Steffen
{
"distribution": [
{
"contentUrl": "https://rodare.hzdr.de/api/files/cb0665ed-43e9-4f45-9c28-dcc3c860f3ac/analysis_data.zip",
"fileFormat": "zip",
"@type": "DataDownload"
},
{
"contentUrl": "https://rodare.hzdr.de/api/files/cb0665ed-43e9-4f45-9c28-dcc3c860f3ac/water_phantom.zip",
"fileFormat": "zip",
"@type": "DataDownload"
}
],
"url": "https://rodare.hzdr.de/record/2764",
"@type": "Dataset",
"@context": "https://schema.org/",
"creator": [
{
"name": "Starke, Sebastian",
"@type": "Person",
"@id": "https://orcid.org/0000-0001-5007-1868"
},
{
"name": "Kieslich, Aaron Markus",
"@type": "Person"
},
{
"name": "Palkowitsch, Martina",
"@type": "Person"
},
{
"name": "Hennings, Fabian",
"@type": "Person"
},
{
"name": "Troost, Esther Gera Cornelia",
"@type": "Person",
"@id": "https://orcid.org/0000-0001-9550-9050"
},
{
"name": "Krause, Mechthild",
"@type": "Person",
"@id": "https://orcid.org/0000-0003-1776-9556"
},
{
"name": "Bensberg, Jona",
"@type": "Person"
},
{
"name": "Hahn, Christian",
"@type": "Person"
},
{
"name": "Heinzelmann, Feline",
"@type": "Person"
},
{
"name": "B\u00e4umer, Christian",
"@type": "Person"
},
{
"name": "L\u00fchr, Armin",
"@type": "Person",
"@id": "https://orcid.org/0000-0002-9450-6859"
},
{
"name": "Timmermann, Beate",
"@type": "Person"
},
{
"name": "L\u00f6ck, Steffen",
"@type": "Person",
"@id": "https://orcid.org/0000-0002-7017-3738"
}
],
"license": "https://creativecommons.org/licenses/by/4.0/legalcode",
"description": "<p>This repository contains the outputs and result data of our deep-learning-based experiments for the approximation of Monte-Carlo-simulated linear energy transfer distributions, which build the foundation for the corresponding article.</p>\n\n<p>The Pytorch checkpoint of our finally chosen SegResNet architecture trained on the UPTD dose distributions is located at dd_pbs/Dose-LETd/clip_let_below_0.04/segresnet/all_trainvalid_data/training/lightning_logs/version_6358843/checkpoints/last.ckpt.</p>\n\n<p> </p>\n\n<p>Moreover, we provide an exemplary data sample from a water phantom for trying our analysis pipeline.</p>",
"identifier": "https://doi.org/10.14278/rodare.2764",
"sameAs": [
"https://www.hzdr.de/publications/Publ-38860"
],
"name": "Data publication: A deep-learning-based surrogate model for Monte-Carlo simulations of the linear energy transfer in primary brain tumor patients treated with proton-beam radiotherapy",
"keywords": [
"proton-beam therapy",
"relative biological effectiveness",
"linear energy transfer",
"NTCP models",
"deep learning",
"brain tumor"
],
"@id": "https://doi.org/10.14278/rodare.2764",
"datePublished": "2024-03-15"
}
| All versions | This version | |
|---|---|---|
| Views | 1,518 | 823 |
| Downloads | 54 | 34 |
| Data volume | 10.0 GB | 7.7 GB |
| Unique views | 1,205 | 677 |
| Unique downloads | 48 | 30 |