Dataset Open Access
Starke, Sebastian; Kieslich, Aaron Markus; Palkowitsch, Martina; Hennings, Fabian; Troost, Esther Gera Cornelia; Krause, Mechthild; Bensberg, Jona; Hahn, Christian; Heinzelmann, Feline; Bäumer, Christian; Lühr, Armin; Timmermann, Beate; Löck, Steffen
{ "url": "https://rodare.hzdr.de/record/2764", "identifier": "https://doi.org/10.14278/rodare.2764", "sameAs": [ "https://www.hzdr.de/publications/Publ-38860" ], "distribution": [ { "fileFormat": "zip", "@type": "DataDownload", "contentUrl": "https://rodare.hzdr.de/api/files/cb0665ed-43e9-4f45-9c28-dcc3c860f3ac/analysis_data.zip" }, { "fileFormat": "zip", "@type": "DataDownload", "contentUrl": "https://rodare.hzdr.de/api/files/cb0665ed-43e9-4f45-9c28-dcc3c860f3ac/water_phantom.zip" } ], "keywords": [ "proton-beam therapy", "relative biological effectiveness", "linear energy transfer", "NTCP models", "deep learning", "brain tumor" ], "@id": "https://doi.org/10.14278/rodare.2764", "datePublished": "2024-03-15", "description": "<p>This repository contains the outputs and result data of our deep-learning-based experiments for the approximation of Monte-Carlo-simulated linear energy transfer distributions, which build the foundation for the corresponding article.</p>\n\n<p>The Pytorch checkpoint of our finally chosen SegResNet architecture trained on the UPTD dose distributions is located at dd_pbs/Dose-LETd/clip_let_below_0.04/segresnet/all_trainvalid_data/training/lightning_logs/version_6358843/checkpoints/last.ckpt.</p>\n\n<p> </p>\n\n<p>Moreover, we provide an exemplary data sample from a water phantom for trying our analysis pipeline.</p>", "license": "https://creativecommons.org/licenses/by/4.0/legalcode", "creator": [ { "name": "Starke, Sebastian", "@id": "https://orcid.org/0000-0001-5007-1868", "@type": "Person" }, { "name": "Kieslich, Aaron Markus", "@type": "Person" }, { "name": "Palkowitsch, Martina", "@type": "Person" }, { "name": "Hennings, Fabian", "@type": "Person" }, { "name": "Troost, Esther Gera Cornelia", "@id": "https://orcid.org/0000-0001-9550-9050", "@type": "Person" }, { "name": "Krause, Mechthild", "@id": "https://orcid.org/0000-0003-1776-9556", "@type": "Person" }, { "name": "Bensberg, Jona", "@type": "Person" }, { "name": "Hahn, Christian", "@type": "Person" }, { "name": "Heinzelmann, Feline", "@type": "Person" }, { "name": "B\u00e4umer, Christian", "@type": "Person" }, { "name": "L\u00fchr, Armin", "@id": "https://orcid.org/0000-0002-9450-6859", "@type": "Person" }, { "name": "Timmermann, Beate", "@type": "Person" }, { "name": "L\u00f6ck, Steffen", "@id": "https://orcid.org/0000-0002-7017-3738", "@type": "Person" } ], "@context": "https://schema.org/", "name": "Data publication: A deep-learning-based surrogate model for Monte-Carlo simulations of the linear energy transfer in primary brain tumor patients treated with proton-beam radiotherapy", "@type": "Dataset" }
All versions | This version | |
---|---|---|
Views | 659 | 428 |
Downloads | 29 | 25 |
Data volume | 6.1 GB | 5.6 GB |
Unique views | 544 | 362 |
Unique downloads | 24 | 22 |