Dataset Open Access

Data publication: A deep-learning-based surrogate model for Monte-Carlo simulations of the linear energy transfer in primary brain tumor patients treated with proton-beam radiotherapy

Starke, Sebastian; Kieslich, Aaron Markus; Palkowitsch, Martina; Hennings, Fabian; Troost, Esther Gera Cornelia; Krause, Mechthild; Bensberg, Jona; Hahn, Christian; Heinzelmann, Feline; Bäumer, Christian; Lühr, Armin; Timmermann, Beate; Löck, Steffen

This repository contains the outputs and result data of our deep-learning-based experiments for the approximation of Monte-Carlo-simulated linear energy transfer distributions, which build the foundation for the corresponding article.

The Pytorch checkpoint of our finally chosen SegResNet architecture trained on the UPTD dose distributions is located at dd_pbs/Dose-LETd/clip_let_below_0.04/segresnet/all_trainvalid_data/training/lightning_logs/version_6358843/checkpoints/last.ckpt.

Moreover, we provide an exemplary data sample from a water phantom for trying our analysis pipeline.

Update:

In this new version we added results of the gamma analyses and the results obtained when trained on the same data as the above model with the difference that we did not clip Monte-Carlo-simulated LET maps as requested during the review process.

Files (238.0 MB)
Name Size
analysis_data.zip
md5:9b62d6d793cb24e93b8d56f792555ac8
144.3 MB Download
water_phantom.zip
md5:75ae4c12df1ec734429e041cf0d50182
93.7 MB Download
659
29
views
downloads
All versions This version
Views 659231
Downloads 294
Data volume 6.1 GB476.1 MB
Unique views 544186
Unique downloads 242

Share

Cite as