Dataset Open Access

Data publication: A deep-learning-based surrogate model for Monte-Carlo simulations of the linear energy transfer in primary brain tumor patients treated with proton-beam radiotherapy

Starke, Sebastian; Kieslich, Aaron Markus; Palkowitsch, Martina; Hennings, Fabian; Troost, Esther Gera Cornelia; Krause, Mechthild; Bensberg, Jona; Hahn, Christian; Heinzelmann, Feline; Bäumer, Christian; Lühr, Armin; Timmermann, Beate; Löck, Steffen


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.14278/rodare.3025</identifier>
  <creators>
    <creator>
      <creatorName>Starke, Sebastian</creatorName>
      <givenName>Sebastian</givenName>
      <familyName>Starke</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5007-1868</nameIdentifier>
    </creator>
    <creator>
      <creatorName>Kieslich, Aaron Markus</creatorName>
      <givenName>Aaron Markus</givenName>
      <familyName>Kieslich</familyName>
    </creator>
    <creator>
      <creatorName>Palkowitsch, Martina</creatorName>
      <givenName>Martina</givenName>
      <familyName>Palkowitsch</familyName>
    </creator>
    <creator>
      <creatorName>Hennings, Fabian</creatorName>
      <givenName>Fabian</givenName>
      <familyName>Hennings</familyName>
    </creator>
    <creator>
      <creatorName>Troost, Esther Gera Cornelia</creatorName>
      <givenName>Esther Gera Cornelia</givenName>
      <familyName>Troost</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9550-9050</nameIdentifier>
    </creator>
    <creator>
      <creatorName>Krause, Mechthild</creatorName>
      <givenName>Mechthild</givenName>
      <familyName>Krause</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1776-9556</nameIdentifier>
    </creator>
    <creator>
      <creatorName>Bensberg, Jona</creatorName>
      <givenName>Jona</givenName>
      <familyName>Bensberg</familyName>
    </creator>
    <creator>
      <creatorName>Hahn, Christian</creatorName>
      <givenName>Christian</givenName>
      <familyName>Hahn</familyName>
    </creator>
    <creator>
      <creatorName>Heinzelmann, Feline</creatorName>
      <givenName>Feline</givenName>
      <familyName>Heinzelmann</familyName>
    </creator>
    <creator>
      <creatorName>Bäumer, Christian</creatorName>
      <givenName>Christian</givenName>
      <familyName>Bäumer</familyName>
    </creator>
    <creator>
      <creatorName>Lühr, Armin</creatorName>
      <givenName>Armin</givenName>
      <familyName>Lühr</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9450-6859</nameIdentifier>
    </creator>
    <creator>
      <creatorName>Timmermann, Beate</creatorName>
      <givenName>Beate</givenName>
      <familyName>Timmermann</familyName>
    </creator>
    <creator>
      <creatorName>Löck, Steffen</creatorName>
      <givenName>Steffen</givenName>
      <familyName>Löck</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-7017-3738</nameIdentifier>
    </creator>
  </creators>
  <titles>
    <title>Data publication: A deep-learning-based surrogate model for Monte-Carlo simulations of the linear energy transfer in primary brain tumor patients treated with proton-beam radiotherapy</title>
  </titles>
  <publisher>Rodare</publisher>
  <publicationYear>2024</publicationYear>
  <subjects>
    <subject>proton-beam therapy</subject>
    <subject>relative biological effectiveness</subject>
    <subject>linear energy transfer</subject>
    <subject>NTCP models</subject>
    <subject>deep learning</subject>
    <subject>brain tumor</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2024-06-21</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/3025</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-38860</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-39339</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-38858</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.2763</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This repository contains the outputs and result data of our deep-learning-based experiments for the approximation of Monte-Carlo-simulated linear energy transfer distributions, which build the foundation for the corresponding article.&lt;/p&gt;

&lt;p&gt;The Pytorch checkpoint of our finally chosen SegResNet architecture trained on the UPTD dose distributions is located at dd_pbs/Dose-LETd/clip_let_below_0.04/segresnet/all_trainvalid_data/training/lightning_logs/version_6358843/checkpoints/last.ckpt.&lt;/p&gt;

&lt;p&gt;Moreover, we provide an exemplary data sample from a water phantom for trying our analysis pipeline.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Update: &lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;In this new version we added results of the gamma analyses and the results obtained when trained on the same data as the above model with the difference that we did not clip Monte-Carlo-simulated LET maps as requested during the review process.&lt;/p&gt;</description>
  </descriptions>
</resource>
331
22
views
downloads
All versions This version
Views 33161
Downloads 224
Data volume 4.4 GB476.1 MB
Unique views 30150
Unique downloads 172

Share

Cite as