Dataset Open Access

Data publication: Learning-based systems for assessing hazard places of contagious diseases and diagnosing patient possibility

Davoodi Monfared, Mansoor; Ghaffari, Mohsen


JSON Export

{
  "id": 1939, 
  "stats": {
    "volume": 40168870.0, 
    "unique_downloads": 8.0, 
    "version_unique_downloads": 8.0, 
    "unique_views": 50.0, 
    "downloads": 10.0, 
    "version_unique_views": 50.0, 
    "version_views": 98.0, 
    "version_downloads": 10.0, 
    "version_volume": 40168870.0, 
    "views": 98.0
  }, 
  "links": {
    "badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.1939.svg", 
    "doi": "https://doi.org/10.14278/rodare.1939", 
    "conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.1938.svg", 
    "conceptdoi": "https://doi.org/10.14278/rodare.1938", 
    "bucket": "https://rodare.hzdr.de/api/files/fea6c718-4ef1-42be-9ecc-427852037ce7", 
    "html": "https://rodare.hzdr.de/record/1939", 
    "latest": "https://rodare.hzdr.de/api/records/1939", 
    "latest_html": "https://rodare.hzdr.de/record/1939"
  }, 
  "conceptdoi": "10.14278/rodare.1938", 
  "revision": 7, 
  "metadata": {
    "doc_id": "1", 
    "creators": [
      {
        "name": "Davoodi Monfared, Mansoor", 
        "orcid": "0000-0003-1010-4121"
      }, 
      {
        "name": "Ghaffari, Mohsen", 
        "affiliation": "Department of Computer Science, IT University of Copenhagen, Copenhagen, 2300, Denmark"
      }
    ], 
    "publication_date": "2022-11-09", 
    "doi": "10.14278/rodare.1939", 
    "relations": {
      "version": [
        {
          "parent": {
            "pid_value": "1938", 
            "pid_type": "recid"
          }, 
          "is_last": true, 
          "count": 1, 
          "index": 0, 
          "last_child": {
            "pid_value": "1939", 
            "pid_type": "recid"
          }
        }
      ]
    }, 
    "access_right": "open", 
    "communities": [
      {
        "id": "casus"
      }, 
      {
        "id": "rodare"
      }
    ], 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "keywords": [
      "Machine learning", 
      "Trajectory tracking", 
      "Patient prediction", 
      "Hidden Markov model", 
      "Covid-19", 
      "Trajectory clustering"
    ], 
    "pub_id": "35419", 
    "resource_type": {
      "title": "Dataset", 
      "type": "dataset"
    }, 
    "description": "<p>The codes and data for the paper &quot;Learning-based systems for assessing hazard places of contagious diseases and diagnosing patient possibility&quot;</p>", 
    "related_identifiers": [
      {
        "identifier": "10.1016/j.eswa.2022.119043", 
        "scheme": "doi", 
        "relation": "isReferencedBy"
      }, 
      {
        "identifier": "https://www.hzdr.de/publications/Publ-35381", 
        "scheme": "url", 
        "relation": "isReferencedBy"
      }, 
      {
        "identifier": "https://www.hzdr.de/publications/Publ-35419", 
        "scheme": "url", 
        "relation": "isIdenticalTo"
      }, 
      {
        "identifier": "10.14278/rodare.1938", 
        "scheme": "doi", 
        "relation": "isVersionOf"
      }
    ], 
    "language": "eng", 
    "access_right_category": "success", 
    "title": "Data publication: Learning-based systems for assessing hazard places of contagious diseases and diagnosing patient possibility"
  }, 
  "conceptrecid": "1938", 
  "owners": [
    524
  ], 
  "updated": "2022-11-10T08:13:54.479793+00:00", 
  "created": "2022-11-09T12:11:54.129827+00:00", 
  "files": [
    {
      "checksum": "md5:0e7f430a1d7dcd7c77237131075ac748", 
      "size": 4016887, 
      "links": {
        "self": "https://rodare.hzdr.de/api/files/fea6c718-4ef1-42be-9ecc-427852037ce7/DETECTOR_and_PREDICTOR_SYSTEMS-main.7z"
      }, 
      "key": "DETECTOR_and_PREDICTOR_SYSTEMS-main.7z", 
      "bucket": "fea6c718-4ef1-42be-9ecc-427852037ce7", 
      "type": "7z"
    }
  ], 
  "doi": "10.14278/rodare.1939"
}
98
10
views
downloads
All versions This version
Views 9898
Downloads 1010
Data volume 40.2 MB40.2 MB
Unique views 5050
Unique downloads 88

Share

Cite as