Software Open Access
Schlegel, Fabian; Bilde, Kasper Gram; Draw, Mazen; Evdokimov, Ilya; Hänsch, Susann; Kamble, Vikrant Vinayak; Khan, Harris; Krull, Benjamin; Lehnigk, Ronald; Li, Jiadong; Lyu, Hongmei; Meller, Richard; Petelin, Gašper; Tekavčič, Matej
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.14278/rodare.1742</identifier> <creators> <creator> <creatorName>Schlegel, Fabian</creatorName> <givenName>Fabian</givenName> <familyName>Schlegel</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3824-9568</nameIdentifier> <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation> </creator> <creator> <creatorName>Bilde, Kasper Gram</creatorName> <givenName>Kasper Gram</givenName> <familyName>Bilde</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-2743-6125</nameIdentifier> <affiliation>AAU Energy, Aalborg University, Denmark</affiliation> </creator> <creator> <creatorName>Draw, Mazen</creatorName> <givenName>Mazen</givenName> <familyName>Draw</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-0268-9118</nameIdentifier> <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation> </creator> <creator> <creatorName>Evdokimov, Ilya</creatorName> <givenName>Ilya</givenName> <familyName>Evdokimov</familyName> <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation> </creator> <creator> <creatorName>Hänsch, Susann</creatorName> <givenName>Susann</givenName> <familyName>Hänsch</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1296-5566</nameIdentifier> <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation> </creator> <creator> <creatorName>Kamble, Vikrant Vinayak</creatorName> <givenName>Vikrant Vinayak</givenName> <familyName>Kamble</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5862-0865</nameIdentifier> <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation> </creator> <creator> <creatorName>Khan, Harris</creatorName> <givenName>Harris</givenName> <familyName>Khan</familyName> <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation> </creator> <creator> <creatorName>Krull, Benjamin</creatorName> <givenName>Benjamin</givenName> <familyName>Krull</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5394-0384</nameIdentifier> <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation> </creator> <creator> <creatorName>Lehnigk, Ronald</creatorName> <givenName>Ronald</givenName> <familyName>Lehnigk</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5408-7370</nameIdentifier> <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation> </creator> <creator> <creatorName>Li, Jiadong</creatorName> <givenName>Jiadong</givenName> <familyName>Li</familyName> <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation> </creator> <creator> <creatorName>Lyu, Hongmei</creatorName> <givenName>Hongmei</givenName> <familyName>Lyu</familyName> <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation> </creator> <creator> <creatorName>Meller, Richard</creatorName> <givenName>Richard</givenName> <familyName>Meller</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3801-2555</nameIdentifier> <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation> </creator> <creator> <creatorName>Petelin, Gašper</creatorName> <givenName>Gašper</givenName> <familyName>Petelin</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5929-5761</nameIdentifier> <affiliation>Computer Systems Department, Jožef Stefan Institute, Slovenia</affiliation> </creator> <creator> <creatorName>Tekavčič, Matej</creatorName> <givenName>Matej</givenName> <familyName>Tekavčič</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9090-7671</nameIdentifier> <affiliation>Reactor Engineering Division, Jožef Stefan Institute, Slovenia</affiliation> </creator> </creators> <titles> <title>HZDR Multiphase Addon for OpenFOAM</title> </titles> <publisher>Rodare</publisher> <publicationYear>2022</publicationYear> <subjects> <subject>Multiphase Flow</subject> <subject>Numerical Simulations</subject> <subject>OpenFOAM</subject> <subject>CFD</subject> <subject>Finite volume method</subject> <subject>Baseline model</subject> <subject>Multi-field two-fluid model</subject> <subject>Eulerian-Eulerian model</subject> <subject>Momentum interpolation</subject> <subject>Partial elimination algorithm</subject> <subject>Free Surface</subject> </subjects> <dates> <date dateType="Issued">2022-06-21</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Software"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/1742</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-32194</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-32356</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-32323</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-32161</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.767</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/energy</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/fwd</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/hzdr</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/openfoam</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier> </relatedIdentifiers> <version>9-s.1-hzdr.2</version> <rightsList> <rights rightsURI="https://opensource.org/licenses/GPL-3.0">GNU General Public License v3.0 or later</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>The HZDR Multiphase Addon is a software publication released by Helmholtz-Zentrum Dresden-Rossendorf according to the <a href="https://www.go-fair.org/fair-principles/">FAIR principles</a> (Findability, Accessibility, Interoperability, and Reuseability). It contains experimental research work for the open-source CFD software OpenFOAM, released by <a href="http://www.openfoam.org">The OpenFOAM Foundation</a>. The developments are dedicated to the numerical simulation of multiphase flows, in particular to the multi-field two-fluid model (Euler-Euler method). Within the OpenFOAM library the <em>multiphaseEulerFoam</em> framework is used for this type of simulation. The addon contains a modified solver named <em>HZDRmultiphaseEulerFoam</em> with the full support of the HZDR baseline model set for polydisperse bubbly flows. In addition a solver dedicated to a hybrid modelling approach (dispersed and resolved interfaces, Meller, Schlegel and Lucas, 2021) named <em>cipsaMultiphaseEulerFoam</em> is provided with the addon. This solver has an interface to the <em>multiphaseEulerFoam</em> framework and utilizes all available interfacial models of it.</p> <p><strong>General enhancements</strong></p> <ul> <li>modified turbulent wall functions of Menter according to Rzehak and Kriebitzsch (2015)</li> <li>dynamic time step adjustment via PID controller</li> </ul> <p><strong>HZDRmultiphaseEulerFoam</strong></p> <ul> <li>bubble induced turbulence model of Ma et al. (2017)</li> <li>drag model of Ishii and Zuber (1979) without correction for swarm and/or viscous effects</li> <li>wall lubrication model of Hosokawa et al. (2002)</li> <li>additional breakup and coalescence models for class method according to Kusters (1991) and Adachi et al. (1994)</li> <li>degassing boundary condition (fvModel)</li> <li>lift force correlation of Hessenkemper et al. (2021)</li> <li>lift force correlation of Saffman (1965) as extended by Mei (1992).</li> <li>aspect ratio correlation of Ziegenhein and Lucas (2017)</li> <li>real pressure treatment via explicit turbulent normal stress according to Rzehak et al. (2021)</li> <li>GPU-based accelerated computation of coalescence and breakup frequencies for the models of Lehr et al. (2002) (Petelin et al., 2021)</li> <li>configuration files and tutorials for easy setup of baseline cases according to H&auml;nsch et al. (2021)</li> </ul> <p><strong>cipsaMultiphaseEulerFoam</strong></p> <ul> <li>morphology adaptive modelling framework for predicting dispersed and resolved interfaces based on Eulerian multi-field two-fluid model</li> <li>compact momentum interpolation method according to Cubero et al. (2014), including virtual mass</li> <li>numerical drag according to Strubelj and Tiselj (2011) to describe resolved interfaces in a volume-of-fluid like manner</li> <li>n-phase partial elimination algorithm for momentum equations to resolve strong phase coupling (Meller, Schlegel and Lucas, 2021)</li> <li>free surface turbulence damping (Frederix et al., 2018) for k-&omega; SST - symmetric and asymmetric - according to Tekavčič et al. (2021)</li> <li>sub-grid scale modelling framework (Meller, Schlegel and Klein, 2021) <ul> <li>additional LES models for the unclosed convective sub-grid scale term</li> <li>closure models for sub-grid surface tension term</li> </ul> </li> <li>configuration files and tutorials for easy setup of hybrid cases</li> </ul></description> <description descriptionType="Other">This work was supported by the Helmholtz European Partnering Program in the project "Crossing borders and scales (Crossing)"</description> <description descriptionType="Other">{"references": ["Adachi, Y., Stuart, M. C., & Fokkink, R. (1994). Kinetics of turbulent coagulation studied by means of end-over-end rotation. Journal of colloid and interface science, 165(2), 310-317.", "Cubero, A., S\u00e1nchez-Insa, A., & Fueyo, N. (2014). A consistent momentum interpolation method for steady and unsteady multiphase flows. Computers & Chemical Engineering, 62, 96-107.", "Frederix, E. M. A., Mathur, A., Dovizio, D., Geurts, B. J., & Komen, E. M. J. (2018). Reynolds-averaged modeling of turbulence damping near a large-scale interface in two-phase flow. Nuclear Engineering and Design, 333, 122-130.", "H\u00e4nsch, S., Evdokimov, I., Schlegel, F., & Lucas, D. (2021). A workflow for the sustainable development of closure models for bubbly flows. Chemical Engineering Science, 116807.", "Hessenkemper, H., Ziegenhein, T., Rzehak, R., Lucas, D., & Tomiyama, A. (2021). Lift force coefficient of ellipsoidal single bubbles in water. International Journal of Multiphase Flow, 138, 103587.", "Hosokawa, S., Tomiyama, A., Misaki, S., & Hamada, T. (2002, January). Lateral migration of single bubbles due to the presence of wall. In Fluids Engineering Division Summer Meeting (Vol. 36150, pp. 855-860).", "Ishii, M., & Zuber, N. (1979). Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal, 25(5), 843-855.", "Kusters, K. A. (1991). The influence of turbulence on aggregation of small particles in agitated vessels. Eindhoven University of Technology.", "Lehr, F., Millies, M., & Mewes, D. (2002). Bubble\u2010size distributions and flow fields in bubble columns. AIChE Journal, 48(11), 2426-2443.", "Ma, T., Santarelli, C., Ziegenhein, T., Lucas, D., & Fr\u00f6hlich, J. (2017). Direct numerical simulation\u2013based Reynolds-averaged closure for bubble-induced turbulence. Physical Review Fluids, 2(3), 034301.", "Mei, R. (1992). An approximate expression for the shear lift force on a spherical particle at finite reynolds number. International Journal of Multiphase Flow, 18(1), 145-147.", "Meller, R., Schlegel, F., & Lucas, D. (2021). Basic verification of a numerical framework applied to a morphology adaptive multifield two\u2010fluid model considering bubble motions. International Journal for Numerical Methods in Fluids, 93(3), 748-773.", "Meller, R., Schlegel, F., & Klein, M. (2021). Sub-grid Scale Modelling and a-Posteriori Tests with a Morphology Adaptive Multifield Two-Fluid Model Considering Rising Gas Bubbles. Flow, Turbulence and Combustion, 1-28.", "Petelin, G., Lehnigk, R., Kelling, J., Papa, G., & Schlegel, F. (2021). GPU-based Accelerated Computation of Coalescence and Breakup Frequencies for Polydisperse Bubbly Flows. 30th International Conference Nuclear Energy for New Europe (NENE2021), Bled, Slovenia.", "Rzehak, R., & Kriebitzsch, S. (2015). Multiphase CFD-simulation of bubbly pipe flow: A code comparison. International Journal of Multiphase Flow, 68, 135-152.", "Rzehak, R., Liao, Y., Meller, R., Schlegel, F., Lehnigk, R., & Lucas, D. (2021). Radial pressure forces in Euler-Euler simulations of turbulent bubbly pipe flows. Nuclear Engineering and Design, 374, 111079.", "Saffmann P. G. (1965). The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics, 22(2), 385-400.", "\u0160trubelj, L., & Tiselj, I. (2011). Two\u2010fluid model with interface sharpening. International Journal for Numerical Methods in Engineering, 85(5), 575-590.", "Tekav\u010di\u010d, M., Meller, R., & Schlegel, F. (2021). Validation of a morphology adaptive multi-field two-fluid model considering counter-current stratified flow with interfacial turbulence damping. Nuclear Engineering and Design, 379, 111223.", "Ziegenhein, T., & Lucas, D. (2017). Observations on bubble shapes in bubble columns under different flow conditions. Experimental Thermal and Fluid Science, 85, 248-256."]}</description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 18,147 | 1,223 |
Downloads | 4,793 | 368 |
Data volume | 71.2 GB | 5.8 GB |
Unique views | 11,249 | 969 |
Unique downloads | 2,831 | 246 |