There is a newer version of this record available.

Software Open Access

HZDR Multiphase Addon for OpenFOAM

Schlegel, Fabian; Bilde, Kasper Gram; Draw, Mazen; Evdokimov, Ilya; Hänsch, Susann; Kamble, Vikrant Vinayak; Khan, Harris; Krull, Benjamin; Lehnigk, Ronald; Li, Jiadong; Lyu, Hongmei; Meller, Richard; Petelin, Gašper; Tekavčič, Matej


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.14278/rodare.1742</identifier>
  <creators>
    <creator>
      <creatorName>Schlegel, Fabian</creatorName>
      <givenName>Fabian</givenName>
      <familyName>Schlegel</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3824-9568</nameIdentifier>
      <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Bilde, Kasper Gram</creatorName>
      <givenName>Kasper Gram</givenName>
      <familyName>Bilde</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-2743-6125</nameIdentifier>
      <affiliation>AAU Energy, Aalborg University, Denmark</affiliation>
    </creator>
    <creator>
      <creatorName>Draw, Mazen</creatorName>
      <givenName>Mazen</givenName>
      <familyName>Draw</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-0268-9118</nameIdentifier>
      <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Evdokimov, Ilya</creatorName>
      <givenName>Ilya</givenName>
      <familyName>Evdokimov</familyName>
      <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Hänsch, Susann</creatorName>
      <givenName>Susann</givenName>
      <familyName>Hänsch</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1296-5566</nameIdentifier>
      <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Kamble, Vikrant Vinayak</creatorName>
      <givenName>Vikrant Vinayak</givenName>
      <familyName>Kamble</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5862-0865</nameIdentifier>
      <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Khan, Harris</creatorName>
      <givenName>Harris</givenName>
      <familyName>Khan</familyName>
      <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Krull, Benjamin</creatorName>
      <givenName>Benjamin</givenName>
      <familyName>Krull</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5394-0384</nameIdentifier>
      <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Lehnigk, Ronald</creatorName>
      <givenName>Ronald</givenName>
      <familyName>Lehnigk</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5408-7370</nameIdentifier>
      <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Li, Jiadong</creatorName>
      <givenName>Jiadong</givenName>
      <familyName>Li</familyName>
      <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Lyu, Hongmei</creatorName>
      <givenName>Hongmei</givenName>
      <familyName>Lyu</familyName>
      <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Meller, Richard</creatorName>
      <givenName>Richard</givenName>
      <familyName>Meller</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3801-2555</nameIdentifier>
      <affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Petelin, Gašper</creatorName>
      <givenName>Gašper</givenName>
      <familyName>Petelin</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5929-5761</nameIdentifier>
      <affiliation>Computer Systems Department, Jožef Stefan Institute, Slovenia</affiliation>
    </creator>
    <creator>
      <creatorName>Tekavčič, Matej</creatorName>
      <givenName>Matej</givenName>
      <familyName>Tekavčič</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9090-7671</nameIdentifier>
      <affiliation>Reactor Engineering Division, Jožef Stefan Institute, Slovenia</affiliation>
    </creator>
  </creators>
  <titles>
    <title>HZDR Multiphase Addon for OpenFOAM</title>
  </titles>
  <publisher>Rodare</publisher>
  <publicationYear>2022</publicationYear>
  <subjects>
    <subject>Multiphase Flow</subject>
    <subject>Numerical Simulations</subject>
    <subject>OpenFOAM</subject>
    <subject>CFD</subject>
    <subject>Finite volume method</subject>
    <subject>Baseline model</subject>
    <subject>Multi-field two-fluid model</subject>
    <subject>Eulerian-Eulerian model</subject>
    <subject>Momentum interpolation</subject>
    <subject>Partial elimination algorithm</subject>
    <subject>Free Surface</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2022-06-21</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Software"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/1742</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-32194</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-32356</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-32323</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-32161</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.767</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/energy</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/fwd</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/hzdr</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/openfoam</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
  </relatedIdentifiers>
  <version>9-s.1-hzdr.2</version>
  <rightsList>
    <rights rightsURI="https://opensource.org/licenses/GPL-3.0">GNU General Public License v3.0 or later</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The HZDR Multiphase Addon is a software publication released by Helmholtz-Zentrum Dresden-Rossendorf according to the &lt;a href="https://www.go-fair.org/fair-principles/"&gt;FAIR principles&lt;/a&gt; (Findability, Accessibility, Interoperability, and Reuseability). It contains experimental research work for the open-source CFD software OpenFOAM, released by &lt;a href="http://www.openfoam.org"&gt;The OpenFOAM Foundation&lt;/a&gt;. The developments are dedicated to the numerical simulation of multiphase flows, in particular to the multi-field two-fluid model (Euler-Euler method). Within the OpenFOAM library the &lt;em&gt;multiphaseEulerFoam&lt;/em&gt; framework is used for this type of simulation. The addon contains a modified solver named &lt;em&gt;HZDRmultiphaseEulerFoam&lt;/em&gt; with the full support of the HZDR baseline model set for polydisperse bubbly flows. In addition a solver dedicated to a hybrid modelling approach (dispersed and resolved interfaces, Meller, Schlegel and Lucas, 2021) named &lt;em&gt;cipsaMultiphaseEulerFoam&lt;/em&gt; is provided with the addon. This solver has an interface to the &lt;em&gt;multiphaseEulerFoam&lt;/em&gt; framework and utilizes all available interfacial models of it.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;General enhancements&lt;/strong&gt;&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;modified turbulent wall functions of Menter according to Rzehak and Kriebitzsch (2015)&lt;/li&gt;
	&lt;li&gt;dynamic time step adjustment via PID controller&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&lt;strong&gt;HZDRmultiphaseEulerFoam&lt;/strong&gt;&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;bubble induced turbulence model of Ma et al. (2017)&lt;/li&gt;
	&lt;li&gt;drag model of Ishii and Zuber (1979) without correction for swarm and/or viscous effects&lt;/li&gt;
	&lt;li&gt;wall lubrication model of Hosokawa et al. (2002)&lt;/li&gt;
	&lt;li&gt;additional breakup and coalescence models for class method according to Kusters (1991) and Adachi et al. (1994)&lt;/li&gt;
	&lt;li&gt;degassing boundary condition (fvModel)&lt;/li&gt;
	&lt;li&gt;lift force correlation of Hessenkemper et al. (2021)&lt;/li&gt;
	&lt;li&gt;lift force correlation of Saffman (1965) as extended by Mei (1992).&lt;/li&gt;
	&lt;li&gt;aspect ratio correlation of Ziegenhein and Lucas (2017)&lt;/li&gt;
	&lt;li&gt;real pressure treatment via explicit turbulent normal stress according to Rzehak et al. (2021)&lt;/li&gt;
	&lt;li&gt;GPU-based accelerated computation of coalescence and breakup frequencies for the models of Lehr et al. (2002) (Petelin et al., 2021)&lt;/li&gt;
	&lt;li&gt;configuration files and tutorials for easy setup of baseline cases according to H&amp;auml;nsch et al. (2021)&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;&lt;strong&gt;cipsaMultiphaseEulerFoam&lt;/strong&gt;&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;morphology adaptive modelling framework for predicting dispersed and resolved interfaces based on Eulerian multi-field two-fluid model&lt;/li&gt;
	&lt;li&gt;compact momentum interpolation method according to Cubero et al. (2014), including virtual mass&lt;/li&gt;
	&lt;li&gt;numerical drag according to Strubelj and Tiselj (2011) to describe resolved interfaces in a volume-of-fluid like manner&lt;/li&gt;
	&lt;li&gt;n-phase partial elimination algorithm for momentum equations to resolve strong phase coupling (Meller, Schlegel and Lucas, 2021)&lt;/li&gt;
	&lt;li&gt;free surface turbulence damping (Frederix et al., 2018) for k-&amp;omega; SST - symmetric and asymmetric - according to Tekavčič et al. (2021)&lt;/li&gt;
	&lt;li&gt;sub-grid scale modelling framework (Meller, Schlegel and Klein, 2021)
	&lt;ul&gt;
		&lt;li&gt;additional LES models for the unclosed convective sub-grid scale term&lt;/li&gt;
		&lt;li&gt;closure models for sub-grid surface tension term&lt;/li&gt;
	&lt;/ul&gt;
	&lt;/li&gt;
	&lt;li&gt;configuration files and tutorials for easy setup of hybrid cases&lt;/li&gt;
&lt;/ul&gt;</description>
    <description descriptionType="Other">This work was supported by the Helmholtz European Partnering Program in the project "Crossing borders and scales (Crossing)"</description>
    <description descriptionType="Other">{"references": ["Adachi, Y., Stuart, M. C., &amp; Fokkink, R. (1994). Kinetics of turbulent coagulation studied by means of end-over-end rotation. Journal of colloid and interface science, 165(2), 310-317.", "Cubero, A., S\u00e1nchez-Insa, A., &amp; Fueyo, N. (2014). A consistent momentum interpolation method for steady and unsteady multiphase flows. Computers &amp; Chemical Engineering, 62, 96-107.", "Frederix, E. M. A., Mathur, A., Dovizio, D., Geurts, B. J., &amp; Komen, E. M. J. (2018). Reynolds-averaged modeling of turbulence damping near a large-scale interface in two-phase flow. Nuclear Engineering and Design, 333, 122-130.", "H\u00e4nsch, S., Evdokimov, I., Schlegel, F., &amp; Lucas, D. (2021). A workflow for the sustainable development of closure models for bubbly flows. Chemical Engineering Science, 116807.", "Hessenkemper, H., Ziegenhein, T., Rzehak, R., Lucas, D., &amp; Tomiyama, A. (2021). Lift force coefficient of ellipsoidal single bubbles in water. International Journal of Multiphase Flow, 138, 103587.", "Hosokawa, S., Tomiyama, A., Misaki, S., &amp; Hamada, T. (2002, January). Lateral migration of single bubbles due to the presence of wall. In Fluids Engineering Division Summer Meeting (Vol. 36150, pp. 855-860).", "Ishii, M., &amp; Zuber, N. (1979). Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal, 25(5), 843-855.", "Kusters, K. A. (1991). The influence of turbulence on aggregation of small particles in agitated vessels. Eindhoven University of Technology.", "Lehr, F., Millies, M., &amp; Mewes, D. (2002). Bubble\u2010size distributions and flow fields in bubble columns. AIChE Journal, 48(11), 2426-2443.", "Ma, T., Santarelli, C., Ziegenhein, T., Lucas, D., &amp; Fr\u00f6hlich, J. (2017). Direct numerical simulation\u2013based Reynolds-averaged closure for bubble-induced turbulence. Physical Review Fluids, 2(3), 034301.", "Mei, R. (1992). An approximate expression for the shear lift force on a spherical particle at finite reynolds number. International Journal of Multiphase Flow, 18(1), 145-147.", "Meller, R., Schlegel, F., &amp; Lucas, D. (2021). Basic verification of a numerical framework applied to a morphology adaptive multifield two\u2010fluid model considering bubble motions. International Journal for Numerical Methods in Fluids, 93(3), 748-773.", "Meller, R., Schlegel, F., &amp; Klein, M. (2021). Sub-grid Scale Modelling and a-Posteriori Tests with a Morphology Adaptive Multifield Two-Fluid Model Considering Rising Gas Bubbles. Flow, Turbulence and Combustion, 1-28.", "Petelin, G., Lehnigk, R., Kelling, J., Papa, G., &amp; Schlegel, F. (2021). GPU-based Accelerated Computation of Coalescence and Breakup Frequencies for Polydisperse Bubbly Flows. 30th International Conference Nuclear Energy for New Europe (NENE2021), Bled, Slovenia.", "Rzehak, R., &amp; Kriebitzsch, S. (2015). Multiphase CFD-simulation of bubbly pipe flow: A code comparison. International Journal of Multiphase Flow, 68, 135-152.", "Rzehak, R., Liao, Y., Meller, R., Schlegel, F., Lehnigk, R., &amp; Lucas, D. (2021). Radial pressure forces in Euler-Euler simulations of turbulent bubbly pipe flows. Nuclear Engineering and Design, 374, 111079.", "Saffmann P. G. (1965). The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics, 22(2), 385-400.", "\u0160trubelj, L., &amp; Tiselj, I. (2011). Two\u2010fluid model with interface sharpening. International Journal for Numerical Methods in Engineering, 85(5), 575-590.", "Tekav\u010di\u010d, M., Meller, R., &amp; Schlegel, F. (2021). Validation of a morphology adaptive multi-field two-fluid model considering counter-current stratified flow with interfacial turbulence damping. Nuclear Engineering and Design, 379, 111223.", "Ziegenhein, T., &amp; Lucas, D. (2017). Observations on bubble shapes in bubble columns under different flow conditions. Experimental Thermal and Fluid Science, 85, 248-256."]}</description>
  </descriptions>
</resource>
12,994
3,292
views
downloads
All versions This version
Views 12,994985
Downloads 3,292297
Data volume 52.7 GB5.1 GB
Unique views 8,219781
Unique downloads 1,754178

Share

Cite as