Software Open Access
Schlegel, Fabian;
Bilde, Kasper Gram;
Draw, Mazen;
Evdokimov, Ilya;
Hänsch, Susann;
Kamble, Vikrant Vinayak;
Khan, Harris;
Krull, Benjamin;
Lehnigk, Ronald;
Li, Jiadong;
Lyu, Hongmei;
Meller, Richard;
Petelin, Gašper;
Tekavčič, Matej
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="DOI">10.14278/rodare.1742</identifier>
<creators>
<creator>
<creatorName>Schlegel, Fabian</creatorName>
<givenName>Fabian</givenName>
<familyName>Schlegel</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3824-9568</nameIdentifier>
<affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
</creator>
<creator>
<creatorName>Bilde, Kasper Gram</creatorName>
<givenName>Kasper Gram</givenName>
<familyName>Bilde</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-2743-6125</nameIdentifier>
<affiliation>AAU Energy, Aalborg University, Denmark</affiliation>
</creator>
<creator>
<creatorName>Draw, Mazen</creatorName>
<givenName>Mazen</givenName>
<familyName>Draw</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-0268-9118</nameIdentifier>
<affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
</creator>
<creator>
<creatorName>Evdokimov, Ilya</creatorName>
<givenName>Ilya</givenName>
<familyName>Evdokimov</familyName>
<affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
</creator>
<creator>
<creatorName>Hänsch, Susann</creatorName>
<givenName>Susann</givenName>
<familyName>Hänsch</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1296-5566</nameIdentifier>
<affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
</creator>
<creator>
<creatorName>Kamble, Vikrant Vinayak</creatorName>
<givenName>Vikrant Vinayak</givenName>
<familyName>Kamble</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5862-0865</nameIdentifier>
<affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
</creator>
<creator>
<creatorName>Khan, Harris</creatorName>
<givenName>Harris</givenName>
<familyName>Khan</familyName>
<affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
</creator>
<creator>
<creatorName>Krull, Benjamin</creatorName>
<givenName>Benjamin</givenName>
<familyName>Krull</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5394-0384</nameIdentifier>
<affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
</creator>
<creator>
<creatorName>Lehnigk, Ronald</creatorName>
<givenName>Ronald</givenName>
<familyName>Lehnigk</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5408-7370</nameIdentifier>
<affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
</creator>
<creator>
<creatorName>Li, Jiadong</creatorName>
<givenName>Jiadong</givenName>
<familyName>Li</familyName>
<affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
</creator>
<creator>
<creatorName>Lyu, Hongmei</creatorName>
<givenName>Hongmei</givenName>
<familyName>Lyu</familyName>
<affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
</creator>
<creator>
<creatorName>Meller, Richard</creatorName>
<givenName>Richard</givenName>
<familyName>Meller</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3801-2555</nameIdentifier>
<affiliation>Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany</affiliation>
</creator>
<creator>
<creatorName>Petelin, Gašper</creatorName>
<givenName>Gašper</givenName>
<familyName>Petelin</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5929-5761</nameIdentifier>
<affiliation>Computer Systems Department, Jožef Stefan Institute, Slovenia</affiliation>
</creator>
<creator>
<creatorName>Tekavčič, Matej</creatorName>
<givenName>Matej</givenName>
<familyName>Tekavčič</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9090-7671</nameIdentifier>
<affiliation>Reactor Engineering Division, Jožef Stefan Institute, Slovenia</affiliation>
</creator>
</creators>
<titles>
<title>HZDR Multiphase Addon for OpenFOAM</title>
</titles>
<publisher>Rodare</publisher>
<publicationYear>2022</publicationYear>
<subjects>
<subject>Multiphase Flow</subject>
<subject>Numerical Simulations</subject>
<subject>OpenFOAM</subject>
<subject>CFD</subject>
<subject>Finite volume method</subject>
<subject>Baseline model</subject>
<subject>Multi-field two-fluid model</subject>
<subject>Eulerian-Eulerian model</subject>
<subject>Momentum interpolation</subject>
<subject>Partial elimination algorithm</subject>
<subject>Free Surface</subject>
</subjects>
<dates>
<date dateType="Issued">2022-06-21</date>
</dates>
<language>en</language>
<resourceType resourceTypeGeneral="Software"/>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/1742</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-32194</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-32356</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-32323</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-32161</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.767</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/energy</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/fwd</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/hzdr</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/openfoam</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
</relatedIdentifiers>
<version>9-s.1-hzdr.2</version>
<rightsList>
<rights rightsURI="https://opensource.org/licenses/GPL-3.0">GNU General Public License v3.0 or later</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>The HZDR Multiphase Addon is a software publication released by Helmholtz-Zentrum Dresden-Rossendorf according to the <a href="https://www.go-fair.org/fair-principles/">FAIR principles</a> (Findability, Accessibility, Interoperability, and Reuseability). It contains experimental research work for the open-source CFD software OpenFOAM, released by <a href="http://www.openfoam.org">The OpenFOAM Foundation</a>. The developments are dedicated to the numerical simulation of multiphase flows, in particular to the multi-field two-fluid model (Euler-Euler method). Within the OpenFOAM library the <em>multiphaseEulerFoam</em> framework is used for this type of simulation. The addon contains a modified solver named <em>HZDRmultiphaseEulerFoam</em> with the full support of the HZDR baseline model set for polydisperse bubbly flows. In addition a solver dedicated to a hybrid modelling approach (dispersed and resolved interfaces, Meller, Schlegel and Lucas, 2021) named <em>cipsaMultiphaseEulerFoam</em> is provided with the addon. This solver has an interface to the <em>multiphaseEulerFoam</em> framework and utilizes all available interfacial models of it.</p>
<p><strong>General enhancements</strong></p>
<ul>
<li>modified turbulent wall functions of Menter according to Rzehak and Kriebitzsch (2015)</li>
<li>dynamic time step adjustment via PID controller</li>
</ul>
<p><strong>HZDRmultiphaseEulerFoam</strong></p>
<ul>
<li>bubble induced turbulence model of Ma et al. (2017)</li>
<li>drag model of Ishii and Zuber (1979) without correction for swarm and/or viscous effects</li>
<li>wall lubrication model of Hosokawa et al. (2002)</li>
<li>additional breakup and coalescence models for class method according to Kusters (1991) and Adachi et al. (1994)</li>
<li>degassing boundary condition (fvModel)</li>
<li>lift force correlation of Hessenkemper et al. (2021)</li>
<li>lift force correlation of Saffman (1965) as extended by Mei (1992).</li>
<li>aspect ratio correlation of Ziegenhein and Lucas (2017)</li>
<li>real pressure treatment via explicit turbulent normal stress according to Rzehak et al. (2021)</li>
<li>GPU-based accelerated computation of coalescence and breakup frequencies for the models of Lehr et al. (2002) (Petelin et al., 2021)</li>
<li>configuration files and tutorials for easy setup of baseline cases according to H&auml;nsch et al. (2021)</li>
</ul>
<p><strong>cipsaMultiphaseEulerFoam</strong></p>
<ul>
<li>morphology adaptive modelling framework for predicting dispersed and resolved interfaces based on Eulerian multi-field two-fluid model</li>
<li>compact momentum interpolation method according to Cubero et al. (2014), including virtual mass</li>
<li>numerical drag according to Strubelj and Tiselj (2011) to describe resolved interfaces in a volume-of-fluid like manner</li>
<li>n-phase partial elimination algorithm for momentum equations to resolve strong phase coupling (Meller, Schlegel and Lucas, 2021)</li>
<li>free surface turbulence damping (Frederix et al., 2018) for k-&omega; SST - symmetric and asymmetric - according to Tekavčič et al. (2021)</li>
<li>sub-grid scale modelling framework (Meller, Schlegel and Klein, 2021)
<ul>
<li>additional LES models for the unclosed convective sub-grid scale term</li>
<li>closure models for sub-grid surface tension term</li>
</ul>
</li>
<li>configuration files and tutorials for easy setup of hybrid cases</li>
</ul></description>
<description descriptionType="Other">This work was supported by the Helmholtz European Partnering Program in the project "Crossing borders and scales (Crossing)"</description>
<description descriptionType="Other">{"references": ["Adachi, Y., Stuart, M. C., & Fokkink, R. (1994). Kinetics of turbulent coagulation studied by means of end-over-end rotation. Journal of colloid and interface science, 165(2), 310-317.", "Cubero, A., S\u00e1nchez-Insa, A., & Fueyo, N. (2014). A consistent momentum interpolation method for steady and unsteady multiphase flows. Computers & Chemical Engineering, 62, 96-107.", "Frederix, E. M. A., Mathur, A., Dovizio, D., Geurts, B. J., & Komen, E. M. J. (2018). Reynolds-averaged modeling of turbulence damping near a large-scale interface in two-phase flow. Nuclear Engineering and Design, 333, 122-130.", "H\u00e4nsch, S., Evdokimov, I., Schlegel, F., & Lucas, D. (2021). A workflow for the sustainable development of closure models for bubbly flows. Chemical Engineering Science, 116807.", "Hessenkemper, H., Ziegenhein, T., Rzehak, R., Lucas, D., & Tomiyama, A. (2021). Lift force coefficient of ellipsoidal single bubbles in water. International Journal of Multiphase Flow, 138, 103587.", "Hosokawa, S., Tomiyama, A., Misaki, S., & Hamada, T. (2002, January). Lateral migration of single bubbles due to the presence of wall. In Fluids Engineering Division Summer Meeting (Vol. 36150, pp. 855-860).", "Ishii, M., & Zuber, N. (1979). Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal, 25(5), 843-855.", "Kusters, K. A. (1991). The influence of turbulence on aggregation of small particles in agitated vessels. Eindhoven University of Technology.", "Lehr, F., Millies, M., & Mewes, D. (2002). Bubble\u2010size distributions and flow fields in bubble columns. AIChE Journal, 48(11), 2426-2443.", "Ma, T., Santarelli, C., Ziegenhein, T., Lucas, D., & Fr\u00f6hlich, J. (2017). Direct numerical simulation\u2013based Reynolds-averaged closure for bubble-induced turbulence. Physical Review Fluids, 2(3), 034301.", "Mei, R. (1992). An approximate expression for the shear lift force on a spherical particle at finite reynolds number. International Journal of Multiphase Flow, 18(1), 145-147.", "Meller, R., Schlegel, F., & Lucas, D. (2021). Basic verification of a numerical framework applied to a morphology adaptive multifield two\u2010fluid model considering bubble motions. International Journal for Numerical Methods in Fluids, 93(3), 748-773.", "Meller, R., Schlegel, F., & Klein, M. (2021). Sub-grid Scale Modelling and a-Posteriori Tests with a Morphology Adaptive Multifield Two-Fluid Model Considering Rising Gas Bubbles. Flow, Turbulence and Combustion, 1-28.", "Petelin, G., Lehnigk, R., Kelling, J., Papa, G., & Schlegel, F. (2021). GPU-based Accelerated Computation of Coalescence and Breakup Frequencies for Polydisperse Bubbly Flows. 30th International Conference Nuclear Energy for New Europe (NENE2021), Bled, Slovenia.", "Rzehak, R., & Kriebitzsch, S. (2015). Multiphase CFD-simulation of bubbly pipe flow: A code comparison. International Journal of Multiphase Flow, 68, 135-152.", "Rzehak, R., Liao, Y., Meller, R., Schlegel, F., Lehnigk, R., & Lucas, D. (2021). Radial pressure forces in Euler-Euler simulations of turbulent bubbly pipe flows. Nuclear Engineering and Design, 374, 111079.", "Saffmann P. G. (1965). The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics, 22(2), 385-400.", "\u0160trubelj, L., & Tiselj, I. (2011). Two\u2010fluid model with interface sharpening. International Journal for Numerical Methods in Engineering, 85(5), 575-590.", "Tekav\u010di\u010d, M., Meller, R., & Schlegel, F. (2021). Validation of a morphology adaptive multi-field two-fluid model considering counter-current stratified flow with interfacial turbulence damping. Nuclear Engineering and Design, 379, 111223.", "Ziegenhein, T., & Lucas, D. (2017). Observations on bubble shapes in bubble columns under different flow conditions. Experimental Thermal and Fluid Science, 85, 248-256."]}</description>
</descriptions>
</resource>
| All versions | This version | |
|---|---|---|
| Views | 30,825 | 1,737 |
| Downloads | 8,745 | 498 |
| Data volume | 126.4 GB | 7.4 GB |
| Unique views | 19,519 | 1,386 |
| Unique downloads | 5,896 | 358 |