Dataset Open Access
Martinetto, Vincent; Shah, Karan; Cangi, Attila; Pribram-Jones, Aurora
{ "url": "https://rodare.hzdr.de/record/2720", "license": "https://creativecommons.org/licenses/by/4.0/legalcode", "sameAs": [ "https://www.hzdr.de/publications/Publ-38725" ], "keywords": [ "density functional theory", "machine learning" ], "description": "<p>This data repository contains the datasets used in the paper "Inverting the Kohn-Sham equations with physics-informed machine learning". </p>\n\n<p>It contains the data generation scripts, datasets for the systems used in the paper (Single Well - 1D atom, Double Well - 1D diatomic molecule) and output potentials generated by the physics-informed machine learning models (physics-informed neural networks and Fourier neural operators).</p>", "datePublished": "2024-02-01", "creator": [ { "name": "Martinetto, Vincent", "@type": "Person", "affiliation": "Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, USA", "@id": "https://orcid.org/0000-0001-6026-7397" }, { "name": "Shah, Karan", "@type": "Person", "affiliation": "Center for Advanced Systems Understanding, 02826 G\u00f6rlitz, Germany/Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstra\u00dfe 400, 01328 Dresden", "@id": "https://orcid.org/0000-0002-5480-2880" }, { "name": "Cangi, Attila", "@type": "Person", "affiliation": "Center for Advanced Systems Understanding, 02826 G\u00f6rlitz, Germany/Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstra\u00dfe 400, 01328 Dresden", "@id": "https://orcid.org/0000-0001-9162-262X" }, { "name": "Pribram-Jones, Aurora", "@type": "Person", "affiliation": "Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, USA", "@id": "https://orcid.org/0000-0003-0244-1814" } ], "@context": "https://schema.org/", "name": "Inverting the Kohn-Sham equations with physics-informed machine learning", "identifier": "https://doi.org/10.14278/rodare.2720", "@id": "https://doi.org/10.14278/rodare.2720", "distribution": [ { "fileFormat": "zip", "@type": "DataDownload", "contentUrl": "https://rodare.hzdr.de/api/files/3603a26b-9e2c-4f6c-8132-71fb1194c54a/piml_ks_inversion.zip" } ], "@type": "Dataset" }
All versions | This version | |
---|---|---|
Views | 348 | 348 |
Downloads | 40 | 40 |
Data volume | 6.2 GB | 6.2 GB |
Unique views | 311 | 311 |
Unique downloads | 36 | 36 |