Dataset Open Access
Martinetto, Vincent;
Shah, Karan;
Cangi, Attila;
Pribram-Jones, Aurora
{ "url": "https://rodare.hzdr.de/record/2720", "keywords": [ "density functional theory", "machine learning" ], "sameAs": [ "https://www.hzdr.de/publications/Publ-38725" ], "creator": [ { "@type": "Person", "@id": "https://orcid.org/0000-0001-6026-7397", "affiliation": "Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, USA", "name": "Martinetto, Vincent" }, { "@type": "Person", "@id": "https://orcid.org/0000-0002-5480-2880", "affiliation": "Center for Advanced Systems Understanding, 02826 G\u00f6rlitz, Germany/Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstra\u00dfe 400, 01328 Dresden", "name": "Shah, Karan" }, { "@type": "Person", "@id": "https://orcid.org/0000-0001-9162-262X", "affiliation": "Center for Advanced Systems Understanding, 02826 G\u00f6rlitz, Germany/Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstra\u00dfe 400, 01328 Dresden", "name": "Cangi, Attila" }, { "@type": "Person", "@id": "https://orcid.org/0000-0003-0244-1814", "affiliation": "Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, USA", "name": "Pribram-Jones, Aurora" } ], "distribution": [ { "@type": "DataDownload", "contentUrl": "https://rodare.hzdr.de/api/files/3603a26b-9e2c-4f6c-8132-71fb1194c54a/piml_ks_inversion.zip", "fileFormat": "zip" } ], "@context": "https://schema.org/", "datePublished": "2024-02-01", "name": "Inverting the Kohn-Sham equations with physics-informed machine learning", "@id": "https://doi.org/10.14278/rodare.2720", "description": "<p>This data repository contains the datasets used in the paper "Inverting the Kohn-Sham equations with physics-informed machine learning". </p>\n\n<p>It contains the data generation scripts, datasets for the systems used in the paper (Single Well - 1D atom, Double Well - 1D diatomic molecule) and output potentials generated by the physics-informed machine learning models (physics-informed neural networks and Fourier neural operators).</p>", "@type": "Dataset", "license": "https://creativecommons.org/licenses/by/4.0/legalcode", "identifier": "https://doi.org/10.14278/rodare.2720" }
All versions | This version | |
---|---|---|
Views | 512 | 512 |
Downloads | 53 | 53 |
Data volume | 8.2 GB | 8.2 GB |
Unique views | 454 | 454 |
Unique downloads | 49 | 49 |
Martinetto, Vincent, Shah, Karan, Cangi, Attila, & Pribram-Jones, Aurora. (2024). Inverting the Kohn-Sham equations with physics-informed machine learning [Data set]. Rodare. http://doi.org/10.14278/rodare.2720