Dataset Open Access
Martinetto, Vincent;
Shah, Karan;
Cangi, Attila;
Pribram-Jones, Aurora
{ "files": [ { "key": "piml_ks_inversion.zip", "type": "zip", "checksum": "md5:ec731fb92bb05c17a45b9d6bf2b1f530", "links": { "self": "https://rodare.hzdr.de/api/files/3603a26b-9e2c-4f6c-8132-71fb1194c54a/piml_ks_inversion.zip" }, "size": 155142588, "bucket": "3603a26b-9e2c-4f6c-8132-71fb1194c54a" } ], "owners": [ 486 ], "metadata": { "communities": [ { "id": "casus" }, { "id": "matter" }, { "id": "rodare" }, { "id": "zrt" } ], "relations": { "version": [ { "is_last": true, "parent": { "pid_value": "2719", "pid_type": "recid" }, "index": 0, "count": 1, "last_child": { "pid_value": "2720", "pid_type": "recid" } } ] }, "creators": [ { "affiliation": "Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, USA", "name": "Martinetto, Vincent", "orcid": "0000-0001-6026-7397" }, { "affiliation": "Center for Advanced Systems Understanding, 02826 G\u00f6rlitz, Germany/Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstra\u00dfe 400, 01328 Dresden", "name": "Shah, Karan", "orcid": "0000-0002-5480-2880" }, { "affiliation": "Center for Advanced Systems Understanding, 02826 G\u00f6rlitz, Germany/Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstra\u00dfe 400, 01328 Dresden", "name": "Cangi, Attila", "orcid": "0000-0001-9162-262X" }, { "affiliation": "Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, USA", "name": "Pribram-Jones, Aurora", "orcid": "0000-0003-0244-1814" } ], "resource_type": { "type": "dataset", "title": "Dataset" }, "title": "Inverting the Kohn-Sham equations with physics-informed machine learning", "description": "<p>This data repository contains the datasets used in the paper "Inverting the Kohn-Sham equations with physics-informed machine learning". </p>\n\n<p>It contains the data generation scripts, datasets for the systems used in the paper (Single Well - 1D atom, Double Well - 1D diatomic molecule) and output potentials generated by the physics-informed machine learning models (physics-informed neural networks and Fourier neural operators).</p>", "related_identifiers": [ { "identifier": "10.48550/arXiv.2312.15301", "relation": "isSupplementTo", "scheme": "doi" }, { "identifier": "https://www.hzdr.de/publications/Publ-38725", "relation": "isIdenticalTo", "scheme": "url" }, { "identifier": "10.14278/rodare.2719", "relation": "isVersionOf", "scheme": "doi" } ], "doi": "10.14278/rodare.2720", "doc_id": "1", "publication_date": "2024-02-01", "pub_id": "38725", "keywords": [ "density functional theory", "machine learning" ], "license": { "id": "CC-BY-4.0" }, "access_right": "open", "access_right_category": "success" }, "conceptdoi": "10.14278/rodare.2719", "id": 2720, "updated": "2024-08-14T12:27:05.194870+00:00", "stats": { "volume": 8222557164.0, "unique_downloads": 49.0, "version_unique_downloads": 49.0, "unique_views": 454.0, "downloads": 53.0, "version_unique_views": 454.0, "version_views": 512.0, "version_downloads": 53.0, "version_volume": 8222557164.0, "views": 512.0 }, "revision": 7, "created": "2024-02-01T14:29:46.045736+00:00", "links": { "badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.2720.svg", "doi": "https://doi.org/10.14278/rodare.2720", "conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.2719.svg", "conceptdoi": "https://doi.org/10.14278/rodare.2719", "bucket": "https://rodare.hzdr.de/api/files/3603a26b-9e2c-4f6c-8132-71fb1194c54a", "html": "https://rodare.hzdr.de/record/2720", "latest": "https://rodare.hzdr.de/api/records/2720", "latest_html": "https://rodare.hzdr.de/record/2720" }, "conceptrecid": "2719", "doi": "10.14278/rodare.2720" }
All versions | This version | |
---|---|---|
Views | 512 | 512 |
Downloads | 53 | 53 |
Data volume | 8.2 GB | 8.2 GB |
Unique views | 454 | 454 |
Unique downloads | 49 | 49 |
Martinetto, Vincent, Shah, Karan, Cangi, Attila, & Pribram-Jones, Aurora. (2024). Inverting the Kohn-Sham equations with physics-informed machine learning [Data set]. Rodare. http://doi.org/10.14278/rodare.2720