Dataset Open Access

Inverting the Kohn-Sham equations with physics-informed machine learning

Martinetto, Vincent; Shah, Karan; Cangi, Attila; Pribram-Jones, Aurora


JSON Export

{
  "owners": [
    486
  ], 
  "created": "2024-02-01T14:29:46.045736+00:00", 
  "files": [
    {
      "type": "zip", 
      "size": 155142588, 
      "checksum": "md5:ec731fb92bb05c17a45b9d6bf2b1f530", 
      "bucket": "3603a26b-9e2c-4f6c-8132-71fb1194c54a", 
      "links": {
        "self": "https://rodare.hzdr.de/api/files/3603a26b-9e2c-4f6c-8132-71fb1194c54a/piml_ks_inversion.zip"
      }, 
      "key": "piml_ks_inversion.zip"
    }
  ], 
  "stats": {
    "volume": 6205703520.0, 
    "unique_downloads": 36.0, 
    "version_unique_downloads": 36.0, 
    "unique_views": 311.0, 
    "downloads": 40.0, 
    "version_unique_views": 311.0, 
    "version_views": 348.0, 
    "version_downloads": 40.0, 
    "version_volume": 6205703520.0, 
    "views": 348.0
  }, 
  "conceptdoi": "10.14278/rodare.2719", 
  "revision": 7, 
  "updated": "2024-08-14T12:27:05.194870+00:00", 
  "metadata": {
    "title": "Inverting the Kohn-Sham equations with physics-informed machine learning", 
    "communities": [
      {
        "id": "casus"
      }, 
      {
        "id": "matter"
      }, 
      {
        "id": "rodare"
      }, 
      {
        "id": "zrt"
      }
    ], 
    "related_identifiers": [
      {
        "identifier": "10.48550/arXiv.2312.15301", 
        "scheme": "doi", 
        "relation": "isSupplementTo"
      }, 
      {
        "identifier": "https://www.hzdr.de/publications/Publ-38725", 
        "scheme": "url", 
        "relation": "isIdenticalTo"
      }, 
      {
        "identifier": "10.14278/rodare.2719", 
        "scheme": "doi", 
        "relation": "isVersionOf"
      }
    ], 
    "publication_date": "2024-02-01", 
    "access_right_category": "success", 
    "pub_id": "38725", 
    "access_right": "open", 
    "description": "<p>This data repository contains the datasets used in the paper &quot;Inverting the Kohn-Sham equations with physics-informed machine learning&quot;.&nbsp;</p>\n\n<p>It contains the data generation scripts, datasets for the systems used in the paper (Single Well - 1D atom, Double Well - 1D diatomic molecule) and output potentials&nbsp;generated by the physics-informed machine learning models (physics-informed neural networks and Fourier neural operators).</p>", 
    "doc_id": "1", 
    "relations": {
      "version": [
        {
          "index": 0, 
          "parent": {
            "pid_value": "2719", 
            "pid_type": "recid"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_value": "2720", 
            "pid_type": "recid"
          }, 
          "count": 1
        }
      ]
    }, 
    "doi": "10.14278/rodare.2720", 
    "keywords": [
      "density functional theory", 
      "machine learning"
    ], 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "creators": [
      {
        "name": "Martinetto, Vincent", 
        "affiliation": "Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, USA", 
        "orcid": "0000-0001-6026-7397"
      }, 
      {
        "name": "Shah, Karan", 
        "affiliation": "Center for Advanced Systems Understanding, 02826 G\u00f6rlitz, Germany/Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstra\u00dfe 400, 01328 Dresden", 
        "orcid": "0000-0002-5480-2880"
      }, 
      {
        "name": "Cangi, Attila", 
        "affiliation": "Center for Advanced Systems Understanding, 02826 G\u00f6rlitz, Germany/Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstra\u00dfe 400, 01328 Dresden", 
        "orcid": "0000-0001-9162-262X"
      }, 
      {
        "name": "Pribram-Jones, Aurora", 
        "affiliation": "Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, USA", 
        "orcid": "0000-0003-0244-1814"
      }
    ]
  }, 
  "links": {
    "badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.2720.svg", 
    "doi": "https://doi.org/10.14278/rodare.2720", 
    "conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.2719.svg", 
    "conceptdoi": "https://doi.org/10.14278/rodare.2719", 
    "bucket": "https://rodare.hzdr.de/api/files/3603a26b-9e2c-4f6c-8132-71fb1194c54a", 
    "html": "https://rodare.hzdr.de/record/2720", 
    "latest": "https://rodare.hzdr.de/api/records/2720", 
    "latest_html": "https://rodare.hzdr.de/record/2720"
  }, 
  "conceptrecid": "2719", 
  "doi": "10.14278/rodare.2720", 
  "id": 2720
}
348
40
views
downloads
All versions This version
Views 348348
Downloads 4040
Data volume 6.2 GB6.2 GB
Unique views 311311
Unique downloads 3636

Share

Cite as