Dataset Open Access

Inverting the Kohn-Sham equations with physics-informed machine learning

Martinetto, Vincent; Shah, Karan; Cangi, Attila; Pribram-Jones, Aurora


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.14278/rodare.2720</identifier>
  <creators>
    <creator>
      <creatorName>Martinetto, Vincent</creatorName>
      <givenName>Vincent</givenName>
      <familyName>Martinetto</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6026-7397</nameIdentifier>
      <affiliation>Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, USA</affiliation>
    </creator>
    <creator>
      <creatorName>Shah, Karan</creatorName>
      <givenName>Karan</givenName>
      <familyName>Shah</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5480-2880</nameIdentifier>
      <affiliation>Center for Advanced Systems Understanding, 02826 Görlitz, Germany/Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden</affiliation>
    </creator>
    <creator>
      <creatorName>Cangi, Attila</creatorName>
      <givenName>Attila</givenName>
      <familyName>Cangi</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9162-262X</nameIdentifier>
      <affiliation>Center for Advanced Systems Understanding, 02826 Görlitz, Germany/Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden</affiliation>
    </creator>
    <creator>
      <creatorName>Pribram-Jones, Aurora</creatorName>
      <givenName>Aurora</givenName>
      <familyName>Pribram-Jones</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-0244-1814</nameIdentifier>
      <affiliation>Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, USA</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Inverting the Kohn-Sham equations with physics-informed machine learning</title>
  </titles>
  <publisher>Rodare</publisher>
  <publicationYear>2024</publicationYear>
  <subjects>
    <subject>density functional theory</subject>
    <subject>machine learning</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2024-02-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/2720</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsSupplementTo">10.48550/arXiv.2312.15301</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-38725</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.2719</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/casus</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/matter</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/zrt</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This data repository contains the datasets used in the paper &amp;quot;Inverting the Kohn-Sham equations with physics-informed machine learning&amp;quot;.&amp;nbsp;&lt;/p&gt;

&lt;p&gt;It contains the data generation scripts, datasets for the systems used in the paper (Single Well - 1D atom, Double Well - 1D diatomic molecule) and output potentials&amp;nbsp;generated by the physics-informed machine learning models (physics-informed neural networks and Fourier neural operators).&lt;/p&gt;</description>
  </descriptions>
</resource>
512
53
views
downloads
All versions This version
Views 512512
Downloads 5353
Data volume 8.2 GB8.2 GB
Unique views 454454
Unique downloads 4949

Share

Cite as

Martinetto, Vincent, Shah, Karan, Cangi, Attila, & Pribram-Jones, Aurora. (2024). Inverting the Kohn-Sham equations with physics-informed machine learning [Data set]. Rodare. http://doi.org/10.14278/rodare.2720

Loading...