Dataset Open Access
Martinetto, Vincent;
Shah, Karan;
Cangi, Attila;
Pribram-Jones, Aurora
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="DOI">10.14278/rodare.2720</identifier>
<creators>
<creator>
<creatorName>Martinetto, Vincent</creatorName>
<givenName>Vincent</givenName>
<familyName>Martinetto</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6026-7397</nameIdentifier>
<affiliation>Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, USA</affiliation>
</creator>
<creator>
<creatorName>Shah, Karan</creatorName>
<givenName>Karan</givenName>
<familyName>Shah</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5480-2880</nameIdentifier>
<affiliation>Center for Advanced Systems Understanding, 02826 Görlitz, Germany/Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden</affiliation>
</creator>
<creator>
<creatorName>Cangi, Attila</creatorName>
<givenName>Attila</givenName>
<familyName>Cangi</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9162-262X</nameIdentifier>
<affiliation>Center for Advanced Systems Understanding, 02826 Görlitz, Germany/Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden</affiliation>
</creator>
<creator>
<creatorName>Pribram-Jones, Aurora</creatorName>
<givenName>Aurora</givenName>
<familyName>Pribram-Jones</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-0244-1814</nameIdentifier>
<affiliation>Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, USA</affiliation>
</creator>
</creators>
<titles>
<title>Inverting the Kohn-Sham equations with physics-informed machine learning</title>
</titles>
<publisher>Rodare</publisher>
<publicationYear>2024</publicationYear>
<subjects>
<subject>density functional theory</subject>
<subject>machine learning</subject>
</subjects>
<dates>
<date dateType="Issued">2024-02-01</date>
</dates>
<resourceType resourceTypeGeneral="Dataset"/>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/2720</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsSupplementTo">10.48550/arXiv.2312.15301</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-38725</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.2719</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/casus</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/matter</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/zrt</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>This data repository contains the datasets used in the paper &quot;Inverting the Kohn-Sham equations with physics-informed machine learning&quot;.&nbsp;</p>
<p>It contains the data generation scripts, datasets for the systems used in the paper (Single Well - 1D atom, Double Well - 1D diatomic molecule) and output potentials&nbsp;generated by the physics-informed machine learning models (physics-informed neural networks and Fourier neural operators).</p></description>
</descriptions>
</resource>
| All versions | This version | |
|---|---|---|
| Views | 821 | 821 |
| Downloads | 152 | 152 |
| Data volume | 23.6 GB | 23.6 GB |
| Unique views | 746 | 746 |
| Unique downloads | 148 | 148 |