Dataset Open Access

Scripts and Models for "Predicting electronic structures at any length scale with machine learning"

Fiedler, Lenz; Schmerler, Steve; Modine, Normand; Vogel, Dayton J.; Popoola, Gabriel A.; Thompson, Aidan; Rajamanickam, Sivasankaran; Cangi, Attila


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Fiedler, Lenz</dc:creator>
  <dc:creator>Schmerler, Steve</dc:creator>
  <dc:creator>Modine, Normand</dc:creator>
  <dc:creator>Vogel, Dayton J.</dc:creator>
  <dc:creator>Popoola, Gabriel A.</dc:creator>
  <dc:creator>Thompson, Aidan</dc:creator>
  <dc:creator>Rajamanickam, Sivasankaran</dc:creator>
  <dc:creator>Cangi, Attila</dc:creator>
  <dc:date>2022-09-30</dc:date>
  <dc:description>Scripts and Models for "Predicting the Electronic Structure of Matter on Ultra-Large Scales"

This data set contains scripts and models to reproduce the results of our manuscript "Physics-informed Machine Learning 
Models for Scalable Density Functional Theory Calculations". The scripts are supposed to be used in conjunction
with the ab-initio data sets also published alongside our research article. 

Requirements

python&gt;=3.7.x
mala&gt;=1.1.0
ase
numpy

Contents

| Folder name      | Description                                      |
|------------------|--------------------------------------------------|
| data_analysis/   | Run script for RDF calculations        |
| model_inference/ | Run script to run inference based on MALA models |
| model_training/  | Run script to train MALA models                  |
| trained_models/  | Trained models for beryllium and aluminium       |
</dc:description>
  <dc:identifier>https://rodare.hzdr.de/record/1851</dc:identifier>
  <dc:identifier>10.14278/rodare.1851</dc:identifier>
  <dc:identifier>oai:rodare.hzdr.de:1851</dc:identifier>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-35305</dc:relation>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-39797</dc:relation>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-35418</dc:relation>
  <dc:relation>doi:10.14278/rodare.1850</dc:relation>
  <dc:relation>url:https://rodare.hzdr.de/communities/rodare</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:title>Scripts and Models for "Predicting electronic structures at any length scale with machine learning"</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>dataset</dc:type>
</oai_dc:dc>
1,271
542
views
downloads
All versions This version
Views 1,2711,271
Downloads 542542
Data volume 3.2 GB3.2 GB
Unique views 693693
Unique downloads 130130

Share

Cite as

Fiedler, Lenz, Schmerler, Steve, Modine, Normand, Vogel, Dayton J., Popoola, Gabriel A., Thompson, Aidan, … Cangi, Attila. (2022). Scripts and Models for "Predicting electronic structures at any length scale with machine learning" (Version 1.0.0) [Data set]. Rodare. http://doi.org/10.14278/rodare.1851

Loading...