Dataset Open Access
Fiedler, Lenz; Schmerler, Steve; Modine, Normand; Vogel, Dayton J.; Popoola, Gabriel A.; Thompson, Aidan; Rajamanickam, Sivasankaran; Cangi, Attila
{ "DOI": "10.14278/rodare.1851", "version": "1.0.0", "type": "dataset", "issued": { "date-parts": [ [ 2022, 9, 30 ] ] }, "abstract": "<pre><strong>Scripts and Models for "Predicting the Electronic Structure of Matter on Ultra-Large Scales"</strong>\n\nThis data set contains scripts and models to reproduce the results of our manuscript "Physics-informed Machine Learning \nModels for Scalable Density Functional Theory Calculations". The scripts are supposed to be used in conjunction\nwith the ab-initio data sets also published alongside our research article. \n\n<em>Requirements</em>\n<em>\n</em>python>=3.7.x\nmala>=1.1.0\nase\nnumpy\n\n<em>Contents</em>\n\n| Folder name | Description |\n|------------------|--------------------------------------------------|\n| data_analysis/ | Run script for RDF calculations |\n| model_inference/ | Run script to run inference based on MALA models |\n| model_training/ | Run script to train MALA models |\n| trained_models/ | Trained models for beryllium and aluminium |\n</pre>", "author": [ { "family": "Fiedler, Lenz" }, { "family": "Schmerler, Steve" }, { "family": "Modine, Normand" }, { "family": "Vogel, Dayton J." }, { "family": "Popoola, Gabriel A." }, { "family": "Thompson, Aidan" }, { "family": "Rajamanickam, Sivasankaran" }, { "family": "Cangi, Attila" } ], "publisher": "Rodare", "title": "Scripts and Models for \"Predicting electronic structures at any length scale with machine learning\"", "id": "1851" }
All versions | This version | |
---|---|---|
Views | 994 | 994 |
Downloads | 526 | 526 |
Data volume | 3.2 GB | 3.2 GB |
Unique views | 487 | 487 |
Unique downloads | 114 | 114 |