Dataset Open Access
Fiedler, Lenz;
Schmerler, Steve;
Modine, Normand;
Vogel, Dayton J.;
Popoola, Gabriel A.;
Thompson, Aidan;
Rajamanickam, Sivasankaran;
Cangi, Attila
{
"title": "Scripts and Models for \"Predicting electronic structures at any length scale with machine learning\"",
"author": [
{
"family": "Fiedler, Lenz"
},
{
"family": "Schmerler, Steve"
},
{
"family": "Modine, Normand"
},
{
"family": "Vogel, Dayton J."
},
{
"family": "Popoola, Gabriel A."
},
{
"family": "Thompson, Aidan"
},
{
"family": "Rajamanickam, Sivasankaran"
},
{
"family": "Cangi, Attila"
}
],
"type": "dataset",
"version": "1.0.0",
"id": "1851",
"abstract": "<pre><strong>Scripts and Models for "Predicting the Electronic Structure of Matter on Ultra-Large Scales"</strong>\n\nThis data set contains scripts and models to reproduce the results of our manuscript "Physics-informed Machine Learning \nModels for Scalable Density Functional Theory Calculations". The scripts are supposed to be used in conjunction\nwith the ab-initio data sets also published alongside our research article. \n\n<em>Requirements</em>\n<em>\n</em>python>=3.7.x\nmala>=1.1.0\nase\nnumpy\n\n<em>Contents</em>\n\n| Folder name | Description |\n|------------------|--------------------------------------------------|\n| data_analysis/ | Run script for RDF calculations |\n| model_inference/ | Run script to run inference based on MALA models |\n| model_training/ | Run script to train MALA models |\n| trained_models/ | Trained models for beryllium and aluminium |\n</pre>",
"DOI": "10.14278/rodare.1851",
"issued": {
"date-parts": [
[
2022,
9,
30
]
]
},
"publisher": "Rodare"
}
| All versions | This version | |
|---|---|---|
| Views | 1,466 | 1,466 |
| Downloads | 551 | 551 |
| Data volume | 3.3 GB | 3.3 GB |
| Unique views | 850 | 850 |
| Unique downloads | 139 | 139 |