Dataset Open Access
Fiedler, Lenz;
Schmerler, Steve;
Modine, Normand;
Vogel, Dayton J.;
Popoola, Gabriel A.;
Thompson, Aidan;
Rajamanickam, Sivasankaran;
Cangi, Attila
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="DOI">10.14278/rodare.1851</identifier>
<creators>
<creator>
<creatorName>Fiedler, Lenz</creatorName>
<givenName>Lenz</givenName>
<familyName>Fiedler</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-8311-0613</nameIdentifier>
<affiliation>HZDR / CASUS</affiliation>
</creator>
<creator>
<creatorName>Schmerler, Steve</creatorName>
<givenName>Steve</givenName>
<familyName>Schmerler</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1354-0578</nameIdentifier>
<affiliation>HZDR</affiliation>
</creator>
<creator>
<creatorName>Modine, Normand</creatorName>
<givenName>Normand</givenName>
<familyName>Modine</familyName>
<affiliation>Sandia National Laboratories</affiliation>
</creator>
<creator>
<creatorName>Vogel, Dayton J.</creatorName>
<givenName>Dayton J.</givenName>
<familyName>Vogel</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3612-0699</nameIdentifier>
<affiliation>Sandia National Laboratories</affiliation>
</creator>
<creator>
<creatorName>Popoola, Gabriel A.</creatorName>
<givenName>Gabriel A.</givenName>
<familyName>Popoola</familyName>
<affiliation>Elder Research, Inc.</affiliation>
</creator>
<creator>
<creatorName>Thompson, Aidan</creatorName>
<givenName>Aidan</givenName>
<familyName>Thompson</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-0324-9114</nameIdentifier>
<affiliation>Sandia National Laboratories</affiliation>
</creator>
<creator>
<creatorName>Rajamanickam, Sivasankaran</creatorName>
<givenName>Sivasankaran</givenName>
<familyName>Rajamanickam</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5854-409X</nameIdentifier>
<affiliation>Sandia National Laboratories</affiliation>
</creator>
<creator>
<creatorName>Cangi, Attila</creatorName>
<givenName>Attila</givenName>
<familyName>Cangi</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9162-262X</nameIdentifier>
<affiliation>HZDR / CASUS</affiliation>
</creator>
</creators>
<titles>
<title>Scripts and Models for "Predicting electronic structures at any length scale with machine learning"</title>
</titles>
<publisher>Rodare</publisher>
<publicationYear>2022</publicationYear>
<dates>
<date dateType="Issued">2022-09-30</date>
</dates>
<resourceType resourceTypeGeneral="Dataset"/>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/1851</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-35305</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-39797</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-35418</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.1850</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
</relatedIdentifiers>
<version>1.0.0</version>
<rightsList>
<rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><pre><strong>Scripts and Models for &quot;Predicting the Electronic Structure of Matter on Ultra-Large Scales&quot;</strong>
This data set contains scripts and models to reproduce the results of our manuscript &quot;Physics-informed Machine Learning
Models for Scalable Density Functional Theory Calculations&quot;. The scripts are supposed to be used in conjunction
with the ab-initio data sets also published alongside our research article.
<em>Requirements</em>
<em>
</em>python&gt;=3.7.x
mala&gt;=1.1.0
ase
numpy
<em>Contents</em>
| Folder name | Description |
|------------------|--------------------------------------------------|
| data_analysis/ | Run script for RDF calculations |
| model_inference/ | Run script to run inference based on MALA models |
| model_training/ | Run script to train MALA models |
| trained_models/ | Trained models for beryllium and aluminium |
</pre></description>
</descriptions>
</resource>
| All versions | This version | |
|---|---|---|
| Views | 1,466 | 1,466 |
| Downloads | 551 | 551 |
| Data volume | 3.3 GB | 3.3 GB |
| Unique views | 850 | 850 |
| Unique downloads | 139 | 139 |