Dataset Open Access
Fiedler, Lenz;
Schmerler, Steve;
Modine, Normand;
Vogel, Dayton J.;
Popoola, Gabriel A.;
Thompson, Aidan;
Rajamanickam, Sivasankaran;
Cangi, Attila
{ "doi": "10.14278/rodare.1851", "owners": [ 354 ], "files": [ { "type": "zip", "size": 5992336, "checksum": "md5:d7e8a25ec24f5273042c1c469c7caae0", "links": { "self": "https://rodare.hzdr.de/api/files/a7d766b9-2422-4f12-8062-91d64d6f6b97/size_transfer_cleaned.zip" }, "key": "size_transfer_cleaned.zip", "bucket": "a7d766b9-2422-4f12-8062-91d64d6f6b97" } ], "stats": { "volume": 2810405584.0, "unique_downloads": 60.0, "version_unique_downloads": 60.0, "unique_views": 128.0, "downloads": 469.0, "version_unique_views": 128.0, "version_views": 579.0, "version_downloads": 469.0, "version_volume": 2810405584.0, "views": 579.0 }, "links": { "badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.1851.svg", "doi": "https://doi.org/10.14278/rodare.1851", "conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.1850.svg", "conceptdoi": "https://doi.org/10.14278/rodare.1850", "bucket": "https://rodare.hzdr.de/api/files/a7d766b9-2422-4f12-8062-91d64d6f6b97", "html": "https://rodare.hzdr.de/record/1851", "latest": "https://rodare.hzdr.de/api/records/1851", "latest_html": "https://rodare.hzdr.de/record/1851" }, "id": 1851, "conceptrecid": "1850", "updated": "2022-11-08T08:21:35.368718+00:00", "created": "2022-10-21T13:18:19.669348+00:00", "metadata": { "creators": [ { "name": "Fiedler, Lenz", "affiliation": "HZDR / CASUS", "orcid": "0000-0002-8311-0613" }, { "name": "Schmerler, Steve", "affiliation": "HZDR", "orcid": "0000-0003-1354-0578" }, { "name": "Modine, Normand", "affiliation": "Sandia National Laboratories" }, { "name": "Vogel, Dayton J.", "affiliation": "Sandia National Laboratories", "orcid": "0000-0003-3612-0699" }, { "name": "Popoola, Gabriel A.", "affiliation": "Elder Research, Inc." }, { "name": "Thompson, Aidan", "affiliation": "Sandia National Laboratories", "orcid": "0000-0002-0324-9114" }, { "name": "Rajamanickam, Sivasankaran", "affiliation": "Sandia National Laboratories", "orcid": "0000-0002-5854-409X" }, { "name": "Cangi, Attila", "affiliation": "HZDR / CASUS", "orcid": "0000-0001-9162-262X" } ], "communities": [ { "id": "rodare" } ], "publication_date": "2022-09-30", "relations": { "version": [ { "index": 0, "is_last": true, "count": 1, "last_child": { "pid_value": "1851", "pid_type": "recid" }, "parent": { "pid_value": "1850", "pid_type": "recid" } } ] }, "license": { "id": "CC-BY-4.0" }, "related_identifiers": [ { "scheme": "url", "identifier": "https://www.hzdr.de/publications/Publ-35305", "relation": "isIdenticalTo" }, { "scheme": "doi", "identifier": "10.14278/rodare.1850", "relation": "isVersionOf" } ], "doi": "10.14278/rodare.1851", "pub_id": "35305", "doc_id": "1", "version": "1.0.0", "resource_type": { "type": "dataset", "title": "Dataset" }, "access_right_category": "success", "access_right": "open", "title": "Scripts and Models for \"Predicting electronic structures at any length scale with machine learning\"", "description": "<pre><strong>Scripts and Models for "Predicting the Electronic Structure of Matter on Ultra-Large Scales"</strong>\n\nThis data set contains scripts and models to reproduce the results of our manuscript "Physics-informed Machine Learning \nModels for Scalable Density Functional Theory Calculations". The scripts are supposed to be used in conjunction\nwith the ab-initio data sets also published alongside our research article. \n\n<em>Requirements</em>\n<em>\n</em>python>=3.7.x\nmala>=1.1.0\nase\nnumpy\n\n<em>Contents</em>\n\n| Folder name | Description |\n|------------------|--------------------------------------------------|\n| data_analysis/ | Run script for RDF calculations |\n| model_inference/ | Run script to run inference based on MALA models |\n| model_training/ | Run script to train MALA models |\n| trained_models/ | Trained models for beryllium and aluminium |\n</pre>" }, "conceptdoi": "10.14278/rodare.1850", "revision": 5 }
All versions | This version | |
---|---|---|
Views | 579 | 579 |
Downloads | 469 | 469 |
Data volume | 2.8 GB | 2.8 GB |
Unique views | 128 | 128 |
Unique downloads | 60 | 60 |