There is a newer version of this record available.

Software Open Access

HZDR Multiphase Addon for OpenFOAM

Schlegel, Fabian; Bilde, Kasper Gram; Draw, Mazen; Evdokimov, Ilya; Hänsch, Susann; Khan, Harris; Krull, Benjamin; Lehnigk, Ronald; Li, Jiadong; Lyu, Hongmei; Meller, Richard; Petelin, Gašper; Tekavčič, Matej


JSON Export

{
  "revision": 34, 
  "files": [
    {
      "size": 426459, 
      "checksum": "md5:c26fdc5f676574234e9db1da0e1c882d", 
      "key": "HZDR-Multiphase-Addon-4.0.0.tgz", 
      "links": {
        "self": "https://rodare.hzdr.de/api/files/bf80aea8-2d1a-4081-8bd9-6ace397dfc0a/HZDR-Multiphase-Addon-4.0.0.tgz"
      }, 
      "type": "tgz", 
      "bucket": "bf80aea8-2d1a-4081-8bd9-6ace397dfc0a"
    }, 
    {
      "size": 20352, 
      "checksum": "md5:816aaf960978882f073ada44987008cf", 
      "key": "INSTALLATION.md", 
      "links": {
        "self": "https://rodare.hzdr.de/api/files/bf80aea8-2d1a-4081-8bd9-6ace397dfc0a/INSTALLATION.md"
      }, 
      "type": "md", 
      "bucket": "bf80aea8-2d1a-4081-8bd9-6ace397dfc0a"
    }, 
    {
      "size": 90082691, 
      "checksum": "md5:039d26c0ba5c6536b6612a049b6cc08f", 
      "key": "OpenFOAM-dev.tgz", 
      "links": {
        "self": "https://rodare.hzdr.de/api/files/bf80aea8-2d1a-4081-8bd9-6ace397dfc0a/OpenFOAM-dev.tgz"
      }, 
      "type": "tgz", 
      "bucket": "bf80aea8-2d1a-4081-8bd9-6ace397dfc0a"
    }, 
    {
      "size": 4833, 
      "checksum": "md5:36004bd3d7f9bf9974d90f80a232ddc5", 
      "key": "README.md", 
      "links": {
        "self": "https://rodare.hzdr.de/api/files/bf80aea8-2d1a-4081-8bd9-6ace397dfc0a/README.md"
      }, 
      "type": "md", 
      "bucket": "bf80aea8-2d1a-4081-8bd9-6ace397dfc0a"
    }, 
    {
      "size": 12736347, 
      "checksum": "md5:958bf59ee5ac6e36ac4297bb985dd905", 
      "key": "ThirdParty-dev.tgz", 
      "links": {
        "self": "https://rodare.hzdr.de/api/files/bf80aea8-2d1a-4081-8bd9-6ace397dfc0a/ThirdParty-dev.tgz"
      }, 
      "type": "tgz", 
      "bucket": "bf80aea8-2d1a-4081-8bd9-6ace397dfc0a"
    }
  ], 
  "conceptdoi": "10.14278/rodare.767", 
  "id": 1496, 
  "stats": {
    "volume": 4596368019.0, 
    "unique_downloads": 224.0, 
    "version_unique_downloads": 1772.0, 
    "unique_views": 1084.0, 
    "downloads": 348.0, 
    "version_unique_views": 8335.0, 
    "version_views": 13159.0, 
    "version_downloads": 3313.0, 
    "version_volume": 53136273929.0, 
    "views": 1382.0
  }, 
  "created": "2022-03-23T15:13:45.840481+00:00", 
  "conceptrecid": "767", 
  "metadata": {
    "resource_type": {
      "type": "software", 
      "title": "Software"
    }, 
    "notes": "This work was supported by the Helmholtz European Partnering Program in the project \"Crossing borders and scales (Crossing)\"", 
    "creators": [
      {
        "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
        "orcid": "0000-0003-3824-9568", 
        "name": "Schlegel, Fabian"
      }, 
      {
        "affiliation": "AAU Energy, Aalborg University, Denmark", 
        "orcid": "0000-0002-2743-6125", 
        "name": "Bilde, Kasper Gram"
      }, 
      {
        "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
        "orcid": "0000-0002-0268-9118", 
        "name": "Draw, Mazen"
      }, 
      {
        "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
        "name": "Evdokimov, Ilya"
      }, 
      {
        "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
        "orcid": "0000-0003-1296-5566", 
        "name": "H\u00e4nsch, Susann"
      }, 
      {
        "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
        "name": "Khan, Harris"
      }, 
      {
        "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
        "name": "Krull, Benjamin"
      }, 
      {
        "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
        "orcid": "0000-0002-5408-7370", 
        "name": "Lehnigk, Ronald"
      }, 
      {
        "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
        "name": "Li, Jiadong"
      }, 
      {
        "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
        "name": "Lyu, Hongmei"
      }, 
      {
        "affiliation": "Department of Computational Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany", 
        "orcid": "0000-0002-3801-2555", 
        "name": "Meller, Richard"
      }, 
      {
        "affiliation": "Computer Systems Department, Jo\u017eef Stefan Institute, Slovenia", 
        "orcid": "0000-0001-5929-5761", 
        "name": "Petelin, Ga\u0161per"
      }, 
      {
        "affiliation": "Reactor Engineering Division, Jo\u017eef Stefan Institute, Slovenia", 
        "orcid": "0000-0002-9090-7671", 
        "name": "Tekav\u010di\u010d, Matej"
      }
    ], 
    "license": {
      "id": "GPL-3.0-only"
    }, 
    "description": "<p>The HZDR Multiphase Addon is a software publication released by Helmholtz-Zentrum Dresden-Rossendorf according to the <a href=\"https://www.go-fair.org/fair-principles/\">FAIR principles</a> (Findability, Accessibility, Interoperability, and Reuseability). It contains experimental research work for the open-source CFD software OpenFOAM, released by <a href=\"http://www.openfoam.org\">The OpenFOAM Foundation</a>. The developments are dedicated to the numerical simulation of multiphase flows, in particular to the multi-field two-fluid model (Euler-Euler method). Within the OpenFOAM library the <em>multiphaseEulerFoam</em> framework is used for this type of simulation. The addon contains a modified solver named <em>HZDRmultiphaseEulerFoam</em> with the full support of the HZDR baseline model set for polydisperse bubbly flows. In addition a solver dedicated to a hybrid modelling approach (dispersed and resolved interfaces, Meller, Schlegel and Lucas, 2021) named <em>cipsaMultiphaseEulerFoam</em> is provided with the addon. This solver has an interface to the <em>multiphaseEulerFoam</em> framework and utilizes all available interfacial models of it.</p>\n\n<p><strong>General enhancements</strong></p>\n\n<ul>\n\t<li>modified turbulent wall functions of Menter according to Rzehak and Kriebitzsch (2015)</li>\n\t<li>dynamic time step adjustment via PID controller</li>\n</ul>\n\n<p><strong>HZDRmultiphaseEulerFoam</strong></p>\n\n<ul>\n\t<li>bubble induced turbulence model of Ma et al. (2017)</li>\n\t<li>drag model of Ishii and Zuber (1979) without correction for swarm and/or viscous effects</li>\n\t<li>wall lubrication model of Hosokawa et al. (2002)</li>\n\t<li>additional breakup and coalescence models for class method according to Kusters (1991) and Adachi et al. (1994)</li>\n\t<li>degassing boundary condition (fvModel)</li>\n\t<li>lift force correlation of Hessenkemper et al. (2021)</li>\n\t<li>lift force correlation of Saffman (1965) as extended by Mei (1992).</li>\n\t<li>aspect ratio correlation of Ziegenhein and Lucas (2017)</li>\n\t<li>real pressure treatment via explicit turbulent normal stress according to Rzehak et al. (2021)</li>\n\t<li>GPU-based accelerated computation of coalescence and breakup frequencies for the models of Lehr et al. (2002) (Petelin et al., 2021)</li>\n\t<li>configuration files and tutorials for easy setup of baseline cases according to H&auml;nsch et al. (2021)</li>\n</ul>\n\n<p><strong>cipsaMultiphaseEulerFoam</strong></p>\n\n<ul>\n\t<li>morphology adaptive modelling framework for predicting dispersed and resolved interfaces based on Eulerian multi-field two-fluid model</li>\n\t<li>compact momentum interpolation method according to Cubero et al. (2014), including virtual mass</li>\n\t<li>numerical drag according to Strubelj and Tiselj (2011) to describe resolved interfaces in a volume-of-fluid like manner</li>\n\t<li>n-phase partial elimination algorithm for momentum equations to resolve strong phase coupling (Meller, Schlegel and Lucas, 2021)</li>\n\t<li>free surface turbulence damping (Frederix et al., 2018) for k-&omega; SST - symmetric and asymmetric - according to Tekav\u010di\u010d et al. (2021)</li>\n\t<li>sub-grid scale modelling framework (Meller, Schlegel and Klein, 2021)\n\t<ul>\n\t\t<li>additional LES models for the unclosed convective sub-grid scale term</li>\n\t\t<li>closure models for sub-grid surface tension term</li>\n\t</ul>\n\t</li>\n\t<li>configuration files and tutorials for easy setup of hybrid cases</li>\n</ul>", 
    "title": "HZDR Multiphase Addon for OpenFOAM", 
    "related_identifiers": [
      {
        "identifier": "https://www.hzdr.de/publications/Publ-32194", 
        "scheme": "url", 
        "relation": "isIdenticalTo"
      }, 
      {
        "identifier": "https://www.hzdr.de/publications/Publ-32356", 
        "scheme": "url", 
        "relation": "isReferencedBy"
      }, 
      {
        "identifier": "https://www.hzdr.de/publications/Publ-32323", 
        "scheme": "url", 
        "relation": "isReferencedBy"
      }, 
      {
        "identifier": "https://www.hzdr.de/publications/Publ-32161", 
        "scheme": "url", 
        "relation": "isReferencedBy"
      }, 
      {
        "identifier": "10.14278/rodare.767", 
        "scheme": "doi", 
        "relation": "isVersionOf"
      }
    ], 
    "doi": "10.14278/rodare.1496", 
    "relations": {
      "version": [
        {
          "count": 14, 
          "last_child": {
            "pid_value": "2321", 
            "pid_type": "recid"
          }, 
          "is_last": false, 
          "parent": {
            "pid_value": "767", 
            "pid_type": "recid"
          }, 
          "index": 8
        }
      ]
    }, 
    "pub_id": "32194", 
    "contributors": [
      {
        "affiliation": "Eidgen\u00f6ssische Technische Hochschule Z\u00fcrich, Swizerland", 
        "name": "Couteau, Arthur", 
        "type": "Other"
      }, 
      {
        "affiliation": "Faculty of Engineering and Physical Sciences, University of Leeds, United Kingdom", 
        "name": "Colombo, Marco", 
        "type": "Other"
      }, 
      {
        "affiliation": "CADFEM GmbH, Germany", 
        "name": "Kriebitzsch, Sebastian", 
        "type": "Other"
      }, 
      {
        "affiliation": "Technische Universit\u00e4t Dresden, Germany", 
        "name": "Parekh, Jigar", 
        "type": "Other"
      }
    ], 
    "language": "eng", 
    "communities": [
      {
        "id": "energy"
      }, 
      {
        "id": "fwd"
      }, 
      {
        "id": "hzdr"
      }, 
      {
        "id": "openfoam"
      }, 
      {
        "id": "rodare"
      }
    ], 
    "keywords": [
      "Multiphase Flow", 
      "Numerical Simulations", 
      "OpenFOAM", 
      "CFD", 
      "Finite volume method", 
      "Baseline model", 
      "Multi-field two-fluid model", 
      "Eulerian-Eulerian model", 
      "Momentum interpolation", 
      "Partial elimination algorithm", 
      "Free Surface"
    ], 
    "access_right_category": "success", 
    "references": [
      "Adachi, Y., Stuart, M. C., & Fokkink, R. (1994). Kinetics of turbulent coagulation studied by means of end-over-end rotation. Journal of colloid and interface science, 165(2), 310-317.", 
      "Cubero, A., S\u00e1nchez-Insa, A., & Fueyo, N. (2014). A consistent momentum interpolation method for steady and unsteady multiphase flows. Computers & Chemical Engineering, 62, 96-107.", 
      "Frederix, E. M. A., Mathur, A., Dovizio, D., Geurts, B. J., & Komen, E. M. J. (2018). Reynolds-averaged modeling of turbulence damping near a large-scale interface in two-phase flow. Nuclear Engineering and Design, 333, 122-130.", 
      "H\u00e4nsch, S., Evdokimov, I., Schlegel, F., & Lucas, D. (2021). A workflow for the sustainable development of closure models for bubbly flows. Chemical Engineering Science, 116807.", 
      "Hessenkemper, H., Ziegenhein, T., Rzehak, R., Lucas, D., & Tomiyama, A. (2021). Lift force coefficient of ellipsoidal single bubbles in water. International Journal of Multiphase Flow, 138, 103587.", 
      "Hosokawa, S., Tomiyama, A., Misaki, S., & Hamada, T. (2002, January). Lateral migration of single bubbles due to the presence of wall. In Fluids Engineering Division Summer Meeting (Vol. 36150, pp. 855-860).", 
      "Ishii, M., & Zuber, N. (1979). Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal, 25(5), 843-855.", 
      "Kusters, K. A. (1991). The influence of turbulence on aggregation of small particles in agitated vessels. Eindhoven University of Technology.", 
      "Lehr, F., Millies, M., & Mewes, D. (2002). Bubble\u2010size distributions and flow fields in bubble columns. AIChE Journal, 48(11), 2426-2443.", 
      "Ma, T., Santarelli, C., Ziegenhein, T., Lucas, D., & Fr\u00f6hlich, J. (2017). Direct numerical simulation\u2013based Reynolds-averaged closure for bubble-induced turbulence. Physical Review Fluids, 2(3), 034301.", 
      "Mei, R. (1992). An approximate expression for the shear lift force on a spherical particle at finite reynolds number. International Journal of Multiphase Flow, 18(1), 145-147.", 
      "Meller, R., Schlegel, F., & Lucas, D. (2021). Basic verification of a numerical framework applied to a morphology adaptive multifield two\u2010fluid model considering bubble motions. International Journal for Numerical Methods in Fluids, 93(3), 748-773.", 
      "Meller, R., Schlegel, F., & Klein, M. (2021). Sub-grid Scale Modelling and a-Posteriori Tests with a Morphology Adaptive Multifield Two-Fluid Model Considering Rising Gas Bubbles. Flow, Turbulence and Combustion, 1-28.", 
      "Petelin, G., Lehnigk, R., Kelling, J., Papa, G., & Schlegel, F. (2021). GPU-based Accelerated Computation of Coalescence and Breakup Frequencies for Polydisperse Bubbly Flows. 30th International Conference Nuclear Energy for New Europe (NENE2021), Bled, Slovenia.", 
      "Rzehak, R., & Kriebitzsch, S. (2015). Multiphase CFD-simulation of bubbly pipe flow: A code comparison. International Journal of Multiphase Flow, 68, 135-152.", 
      "Rzehak, R., Liao, Y., Meller, R., Schlegel, F., Lehnigk, R., & Lucas, D. (2021). Radial pressure forces in Euler-Euler simulations of turbulent bubbly pipe flows. Nuclear Engineering and Design, 374, 111079.", 
      "Saffmann P. G. (1965). The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics, 22(2), 385-400.", 
      "\u0160trubelj, L., & Tiselj, I. (2011). Two\u2010fluid model with interface sharpening. International Journal for Numerical Methods in Engineering, 85(5), 575-590.", 
      "Tekav\u010di\u010d, M., Meller, R., & Schlegel, F. (2021). Validation of a morphology adaptive multi-field two-fluid model considering counter-current stratified flow with interfacial turbulence damping. Nuclear Engineering and Design, 379, 111223.", 
      "Ziegenhein, T., & Lucas, D. (2017). Observations on bubble shapes in bubble columns under different flow conditions. Experimental Thermal and Fluid Science, 85, 248-256."
    ], 
    "version": "4.0.0", 
    "access_right": "open", 
    "publication_date": "2022-03-23", 
    "doc_id": "1"
  }, 
  "links": {
    "badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.1496.svg", 
    "doi": "https://doi.org/10.14278/rodare.1496", 
    "conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.767.svg", 
    "conceptdoi": "https://doi.org/10.14278/rodare.767", 
    "bucket": "https://rodare.hzdr.de/api/files/bf80aea8-2d1a-4081-8bd9-6ace397dfc0a", 
    "html": "https://rodare.hzdr.de/record/1496", 
    "latest": "https://rodare.hzdr.de/api/records/2321", 
    "latest_html": "https://rodare.hzdr.de/record/2321"
  }, 
  "doi": "10.14278/rodare.1496", 
  "owners": [
    141
  ], 
  "updated": "2023-06-23T09:17:28.903300+00:00"
}
13,159
3,313
views
downloads
All versions This version
Views 13,1591,382
Downloads 3,313348
Data volume 53.1 GB4.6 GB
Unique views 8,3351,084
Unique downloads 1,772224

Share

Cite as