Dataset Open Access
Arbash, Elias;
Afifi, Ahmed Jamal Mohammaed;
Belahsen, Ymane;
Fuchs, Margret;
Ghamisi, Pedram;
Scheunders, Paul;
Gloaguen, Richard
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Arbash, Elias</dc:creator> <dc:creator>Afifi, Ahmed Jamal Mohammaed</dc:creator> <dc:creator>Belahsen, Ymane</dc:creator> <dc:creator>Fuchs, Margret</dc:creator> <dc:creator>Ghamisi, Pedram</dc:creator> <dc:creator>Scheunders, Paul</dc:creator> <dc:creator>Gloaguen, Richard</dc:creator> <dc:date>2025-04-07</dc:date> <dc:description>Electrolyzers-HSI Dataset Description: The Electrolyzers-HSI dataset is a multiscene RGB-Hyperspectral benchmark dataset comprising 55 scene of shredded Electrolyzers samples. The RGB images are collected using a Teledyne Dalsa C4020 camera on a conveyor belt, while hyperspectral images (HSI) are acquired with a FENIX spectrometer. The HSI data contains 450 bands in the VNIR and SWIR range [400 - 2500]nm. Data Format RGB Images: .jpg files Ground Truth (GT): .png files. They appear black since the values are between 0 and 5. Correct visualization is done via script. HSI Data: Each hyperspectral data cube .img file is accompanied by a .hdr file. Folder Organization Electrolyzers-HSI: 55 subfolders 1/ ’GT.png’ file for segmentation ground truth ‘HSI.img’ and ‘HSI.hdr’ files for HSI data cube ‘RGB.jpg’ file for the RGB image 2/ ’GT.png’ file for segmentation ground truth ‘HSI.img’ and ‘HSI.hdr’ files for HSI data cube ‘RGB.jpg’ file for the RGB image 3/4/5/6/ … :Same structure for all rest of folders Data Classes in Masks Masks contain 0 to 5 segmentation classes: 0: background 1: “MESH” 2: “Steel_Cathode” 3: "Steel_Anode” 4: “HTEL_Anode” 5: “HTEL_Cathode” Code Repository To facilitate reading and working with the data, Python codes are available on the GitHub repository: https://github.com/hifexplo Citation If you use this dataset, please cite the following article: Word: Latex:</dc:description> <dc:identifier>https://rodare.hzdr.de/record/3668</dc:identifier> <dc:identifier>10.14278/rodare.3668</dc:identifier> <dc:identifier>oai:rodare.hzdr.de:3668</dc:identifier> <dc:relation>url:https://www.hzdr.de/publications/Publ-41192</dc:relation> <dc:relation>doi:10.14278/rodare.3667</dc:relation> <dc:relation>url:https://rodare.hzdr.de/communities/hzdr</dc:relation> <dc:relation>url:https://rodare.hzdr.de/communities/rodare</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:subject>circular economy</dc:subject> <dc:subject>automated data processing</dc:subject> <dc:subject>optical sensors</dc:subject> <dc:subject>Hyperspectral Imaging</dc:subject> <dc:subject>HSI</dc:subject> <dc:subject>Hyperspectral Imaging classification</dc:subject> <dc:subject>recycling</dc:subject> <dc:subject>E-waste</dc:subject> <dc:subject>hyperspectral imaging dataset</dc:subject> <dc:subject>RGB dataset</dc:subject> <dc:subject>conveyor belt</dc:subject> <dc:subject>sensors</dc:subject> <dc:subject>spectrometers</dc:subject> <dc:subject>machine learning</dc:subject> <dc:subject>deep learning</dc:subject> <dc:subject>Electrolyzers</dc:subject> <dc:subject>open source</dc:subject> <dc:subject>digitalization</dc:subject> <dc:subject>Transformers</dc:subject> <dc:title>Electrolyzers-HSI: Close-Range Multi-Scene Hyperspectral Imaging Benchmark Dataset</dc:title> <dc:type>info:eu-repo/semantics/other</dc:type> <dc:type>dataset</dc:type> </oai_dc:dc>
| All versions | This version | |
|---|---|---|
| Views | 1,158 | 1,158 |
| Downloads | 50 | 50 |
| Data volume | 234.5 GB | 234.5 GB |
| Unique views | 1,101 | 1,101 |
| Unique downloads | 36 | 36 |