Dataset Open Access
Arbash, Elias;
Afifi, Ahmed Jamal Mohammaed;
Belahsen, Ymane;
Fuchs, Margret;
Ghamisi, Pedram;
Scheunders, Paul;
Gloaguen, Richard
{
"created": "2025-04-07T13:08:01.690481+00:00",
"doi": "10.14278/rodare.3668",
"revision": 430,
"files": [
{
"size": 4690701426,
"bucket": "6aec6e44-765a-4a91-b1bb-041d6f7f2710",
"key": "Electrolyzers-HSI.zip",
"type": "zip",
"links": {
"self": "https://rodare.hzdr.de/api/files/6aec6e44-765a-4a91-b1bb-041d6f7f2710/Electrolyzers-HSI.zip"
},
"checksum": "md5:637ae2f393c630e762353bc1ab7b17d7"
}
],
"stats": {
"volume": 234535071300.0,
"unique_downloads": 36.0,
"version_unique_downloads": 36.0,
"unique_views": 1101.0,
"downloads": 50.0,
"version_unique_views": 1101.0,
"version_views": 1158.0,
"version_downloads": 50.0,
"version_volume": 234535071300.0,
"views": 1158.0
},
"metadata": {
"doc_id": "1",
"access_right_category": "success",
"communities": [
{
"id": "hzdr"
},
{
"id": "rodare"
}
],
"license": {
"id": "CC-BY-4.0"
},
"title": "Electrolyzers-HSI: Close-Range Multi-Scene Hyperspectral Imaging Benchmark Dataset",
"creators": [
{
"affiliation": "Helmholtz-Institut Freiberg f\u00fcr Ressourcentechnologie - University of Antwerb",
"orcid": "0009-0000-2187-9171",
"name": "Arbash, Elias"
},
{
"orcid": "0000-0001-6782-6753",
"name": "Afifi, Ahmed Jamal Mohammaed"
},
{
"affiliation": "National School of Applied Sciences of Oujda",
"name": "Belahsen, Ymane"
},
{
"affiliation": "Helmholtz-Institut Freiberg f\u00fcr Ressourcentechnologie",
"orcid": "0000-0001-7210-1132",
"name": "Fuchs, Margret"
},
{
"affiliation": "Helmholtz-Institut Freiberg f\u00fcr Ressourcentechnologie",
"orcid": "0000-0003-1203-741X",
"name": "Ghamisi, Pedram"
},
{
"affiliation": "University of Antwerp",
"orcid": "0000-0003-2447-4772",
"name": "Scheunders, Paul"
},
{
"affiliation": "Helmholtz-Institut Freiberg f\u00fcr Ressourcentechnologie",
"orcid": "0000-0002-4383-473X",
"name": "Gloaguen, Richard"
}
],
"publication_date": "2025-04-07",
"pub_id": "41192",
"keywords": [
"circular economy",
"automated data processing",
"optical sensors",
"Hyperspectral Imaging",
"HSI",
"Hyperspectral Imaging classification",
"recycling",
"E-waste",
"hyperspectral imaging dataset",
"RGB dataset",
"conveyor belt",
"sensors",
"spectrometers",
"machine learning",
"deep learning",
"Electrolyzers",
"open source",
"digitalization",
"Transformers"
],
"description": "<p><strong>Electrolyzers-HSI Dataset</strong></p>\r\n\r\n<p>Description:</p>\r\n\r\n<p>The Electrolyzers-HSI dataset is a multiscene RGB-Hyperspectral benchmark dataset comprising 55 scene of shredded Electrolyzers samples. The RGB images are collected using a Teledyne Dalsa C4020 camera on a conveyor belt, while hyperspectral images (HSI) are acquired with a FENIX spectrometer. The HSI data contains 450 bands in the VNIR and SWIR range [400 - 2500]nm.</p>\r\n\r\n<p><strong>Data Format</strong></p>\r\n\r\n<ul>\r\n <li>RGB Images: .jpg files</li>\r\n <li>Ground Truth (GT): .png files. They appear black since the values are between 0 and 5. Correct visualization is done via script.</li>\r\n <li>HSI Data: Each hyperspectral data cube .img file is accompanied by a .hdr file.</li>\r\n</ul>\r\n\r\n<p><strong>Folder Organization</strong></p>\r\n\r\n<ul>\r\n <li><strong>Electrolyzers-HSI: </strong>55 subfolders\u00a0\r\n\r\n <ul>\r\n <li>1/\r\n <ul>\r\n <li>\u2019GT.png\u2019 file for segmentation ground truth</li>\r\n <li>\u2018HSI.img\u2019 and \u2018HSI.hdr\u2019 files for HSI data cube</li>\r\n <li>\u2018RGB.jpg\u2019 file for the RGB image</li>\r\n </ul>\r\n </li>\r\n <li>2/\r\n <ul>\r\n <li>\u2019GT.png\u2019 file for segmentation ground truth</li>\r\n <li>\u2018HSI.img\u2019 and \u2018HSI.hdr\u2019 files for HSI data cube</li>\r\n <li>\u2018RGB.jpg\u2019 file for the RGB image</li>\r\n </ul>\r\n </li>\r\n <li>3/4/5/6/ \u2026 :Same structure for all rest of folders</li>\r\n </ul>\r\n </li>\r\n</ul>\r\n\r\n<p><strong>Data Classes in Masks</strong></p>\r\n\r\n<ul>\r\n <li>Masks contain 0 to 5 segmentation classes:\r\n <ul>\r\n <li>0: background</li>\r\n <li>1: \u201cMESH\u201d</li>\r\n <li>2: \u201cSteel_Cathode\u201d</li>\r\n <li>3: \"Steel_Anode\u201d</li>\r\n <li>4: \u201cHTEL_Anode\u201d</li>\r\n <li>5: \u201cHTEL_Cathode\u201d</li>\r\n </ul>\r\n </li>\r\n</ul>\r\n\r\n<p><strong>Code Repository</strong></p>\r\n\r\n<p>To facilitate reading and working with the data, Python codes are available on the GitHub repository:</p>\r\n\r\n<p>https://github.com/hifexplo</p>\r\n\r\n<p><strong>Citation</strong></p>\r\n\r\n<p>If you use this dataset, please cite the following article:</p>\r\n\r\n<p><strong>Word</strong>:</p>\r\n\r\n<p><strong>Latex:</strong></p>",
"access_right": "open",
"doi": "10.14278/rodare.3668",
"related_identifiers": [
{
"relation": "isIdenticalTo",
"scheme": "url",
"identifier": "https://www.hzdr.de/publications/Publ-41192"
},
{
"relation": "isVersionOf",
"scheme": "doi",
"identifier": "10.14278/rodare.3667"
}
],
"resource_type": {
"type": "dataset",
"title": "Dataset"
},
"relations": {
"version": [
{
"count": 1,
"is_last": true,
"last_child": {
"pid_value": "3668",
"pid_type": "recid"
},
"index": 0,
"parent": {
"pid_value": "3667",
"pid_type": "recid"
}
}
]
}
},
"links": {
"badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.3668.svg",
"doi": "https://doi.org/10.14278/rodare.3668",
"conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.3667.svg",
"conceptdoi": "https://doi.org/10.14278/rodare.3667",
"bucket": "https://rodare.hzdr.de/api/files/6aec6e44-765a-4a91-b1bb-041d6f7f2710",
"html": "https://rodare.hzdr.de/record/3668",
"latest": "https://rodare.hzdr.de/api/records/3668",
"latest_html": "https://rodare.hzdr.de/record/3668"
},
"updated": "2025-11-17T08:00:21.652127+00:00",
"owners": [
840
],
"conceptdoi": "10.14278/rodare.3667",
"id": 3668,
"conceptrecid": "3667"
}
| All versions | This version | |
|---|---|---|
| Views | 1,158 | 1,158 |
| Downloads | 50 | 50 |
| Data volume | 234.5 GB | 234.5 GB |
| Unique views | 1,101 | 1,101 |
| Unique downloads | 36 | 36 |