Software Open Access
Zavalani, Gentian; Hecht, Michael
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nmm##2200000uu#4500</leader> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">high-order integration</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">spectral differentiation</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">numerical quadrature</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">quadrilateral mesh</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.14278/rodare.3029</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/1.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 1.0 Generic</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Surfpy is a Python package for computing surface integrals over smooth embedded manifolds using spectral differentiation.&nbsp;Surfpy rests on curved surface triangulations realised due to kth-order interpolation of the closest point projection, extending initial linear surface approximations. It achieves this by employing a novel technique called square-squeezing, which involves transforming the interpolation tasks of triangulated manifolds to the standard hypercube using a cube-to-simplex transformation that has been recently introduced.</p></subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">54001</subfield> <subfield code="u">https://rodare.hzdr.de/record/3029/files/surfpy</subfield> <subfield code="z">md5:89c0f46ed1b9694efa95db06f246b158</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">2817704</subfield> <subfield code="u">https://rodare.hzdr.de/record/3029/files/surfpy-main.zip</subfield> <subfield code="z">md5:4e59d782214add3e128ea356affe9ef6</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">Zavalani, Gentian</subfield> <subfield code="u">HZDR – Helmholtz-Zentrum Dresden-Rossendorf/Casus & TU Dresden</subfield> <subfield code="0">(orcid)0000-0002-5611-4870</subfield> </datafield> <controlfield tag="005">20240703075232.0</controlfield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2024-06-23</subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="a">https://www.hzdr.de/publications/Publ-39257</subfield> <subfield code="i">isIdenticalTo</subfield> <subfield code="n">url</subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="a">10.14278/rodare.3028</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="n">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-rodare</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">software</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">surfpy is a Python package for computing surface integrals over smooth embedded manifolds.</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="o">oai:rodare.hzdr.de:3029</subfield> <subfield code="p">software</subfield> <subfield code="p">user-rodare</subfield> </datafield> <controlfield tag="001">3029</controlfield> <datafield tag="999" ind1="C" ind2="5"> <subfield code="x">Zavalani, Gentian et al.(2024). High-order numerical integration on regular embedded surfaces to arXiv:2403.09178</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Hecht, Michael</subfield> <subfield code="u">HZDR – Helmholtz-Zentrum Dresden-Rossendorf/Casus </subfield> <subfield code="0">(orcid)0000-0001-9214-8253</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 154 | 154 |
Downloads | 24 | 24 |
Data volume | 15.1 MB | 15.1 MB |
Unique views | 125 | 125 |
Unique downloads | 23 | 23 |