Software Open Access
Zavalani, Gentian; Hecht, Michael
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Zavalani, Gentian</dc:creator> <dc:creator>Hecht, Michael</dc:creator> <dc:date>2024-06-23</dc:date> <dc:description>Surfpy is a Python package for computing surface integrals over smooth embedded manifolds using spectral differentiation. Surfpy rests on curved surface triangulations realised due to kth-order interpolation of the closest point projection, extending initial linear surface approximations. It achieves this by employing a novel technique called square-squeezing, which involves transforming the interpolation tasks of triangulated manifolds to the standard hypercube using a cube-to-simplex transformation that has been recently introduced.</dc:description> <dc:identifier>https://rodare.hzdr.de/record/3029</dc:identifier> <dc:identifier>10.14278/rodare.3029</dc:identifier> <dc:identifier>oai:rodare.hzdr.de:3029</dc:identifier> <dc:language>eng</dc:language> <dc:relation>url:https://www.hzdr.de/publications/Publ-39257</dc:relation> <dc:relation>doi:10.14278/rodare.3028</dc:relation> <dc:relation>url:https://rodare.hzdr.de/communities/rodare</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/licenses/by/1.0/legalcode</dc:rights> <dc:subject>high-order integration</dc:subject> <dc:subject>spectral differentiation</dc:subject> <dc:subject>numerical quadrature</dc:subject> <dc:subject>quadrilateral mesh</dc:subject> <dc:title>surfpy is a Python package for computing surface integrals over smooth embedded manifolds.</dc:title> <dc:type>info:eu-repo/semantics/other</dc:type> <dc:type>software</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 154 | 154 |
Downloads | 24 | 24 |
Data volume | 15.1 MB | 15.1 MB |
Unique views | 125 | 125 |
Unique downloads | 23 | 23 |