Software Open Access

surfpy is a Python package for computing surface integrals over smooth embedded manifolds.

Zavalani, Gentian; Hecht, Michael


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:cnt="http://www.w3.org/2011/content#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.14278/rodare.3029">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Software"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.14278/rodare.3029</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.14278/rodare.3029"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-5611-4870">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Zavalani, Gentian</foaf:name>
        <foaf:givenName>Gentian</foaf:givenName>
        <foaf:familyName>Zavalani</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>HZDR – Helmholtz-Zentrum Dresden-Rossendorf/Casus &amp; TU Dresden</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0001-9214-8253">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Hecht, Michael</foaf:name>
        <foaf:givenName>Michael</foaf:givenName>
        <foaf:familyName>Hecht</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>HZDR – Helmholtz-Zentrum Dresden-Rossendorf/Casus</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>surfpy is a Python package for computing surface integrals over smooth embedded manifolds.</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Rodare</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2024</dct:issued>
    <dcat:keyword>high-order integration</dcat:keyword>
    <dcat:keyword>spectral differentiation</dcat:keyword>
    <dcat:keyword>numerical quadrature</dcat:keyword>
    <dcat:keyword>quadrilateral mesh</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2024-06-23</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://rodare.hzdr.de/record/3029"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://rodare.hzdr.de/record/3029</skos:notation>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://www.hzdr.de/publications/Publ-39257"/>
    <dct:isVersionOf rdf:resource="https://doi.org/10.14278/rodare.3028"/>
    <dct:isPartOf rdf:resource="https://rodare.hzdr.de/communities/rodare"/>
    <dct:description>&lt;p&gt;Surfpy is a Python package for computing surface integrals over smooth embedded manifolds using spectral differentiation.&amp;nbsp;Surfpy rests on curved surface triangulations realised due to kth-order interpolation of the closest point projection, extending initial linear surface approximations. It achieves this by employing a novel technique called square-squeezing, which involves transforming the interpolation tasks of triangulated manifolds to the standard hypercube using a cube-to-simplex transformation that has been recently introduced.&lt;/p&gt;</dct:description>
    <dct:description xml:lang="">{"references": ["Zavalani, Gentian et al.(2024). High-order numerical integration on regular embedded surfaces to \tarXiv:2403.09178"]}</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:rights>
          <dct:RightsStatement rdf:about="https://creativecommons.org/licenses/by/1.0/legalcode">
            <rdfs:label>Creative Commons Attribution 1.0 Generic</rdfs:label>
          </dct:RightsStatement>
        </dct:rights>
        <dcat:accessURL rdf:resource="https://doi.org/10.14278/rodare.3029"/>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
154
24
views
downloads
All versions This version
Views 154154
Downloads 2424
Data volume 15.1 MB15.1 MB
Unique views 125125
Unique downloads 2323

Share

Cite as