Dataset Open Access

Data publication: Machine Learning-Driven Structure Prediction for Iron Hydrides

Tahmasbi, Hossein; Ramakrishna, Kushal; Lokamani, Mani; Cangi, Attila


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Here, we provide the training datasets and the resulting neural network potential for exploring the potential energy surfaces of the FeH system using the minima hopping method. Additionally, data for the minima structures identified in this work are included.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2024-03-25</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-rodare</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.14278/rodare.2778</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Ramakrishna, Kushal</subfield>
    <subfield code="0">(orcid)0000-0003-4211-2484</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Lokamani, Mani</subfield>
    <subfield code="0">(orcid)0000-0001-8679-5905</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Cangi, Attila</subfield>
    <subfield code="0">(orcid)0000-0001-9162-262X</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Tahmasbi, Hossein</subfield>
    <subfield code="0">(orcid)0000-0002-3072-8217</subfield>
  </datafield>
  <controlfield tag="005">20240404064101.0</controlfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="a">https://www.hzdr.de/publications/Publ-38894</subfield>
    <subfield code="i">isIdenticalTo</subfield>
    <subfield code="n">url</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="a">https://www.hzdr.de/publications/Publ-37800</subfield>
    <subfield code="i">isReferencedBy</subfield>
    <subfield code="n">url</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="a">10.14278/rodare.2777</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="n">doi</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:rodare.hzdr.de:2778</subfield>
    <subfield code="p">openaire_data</subfield>
    <subfield code="p">user-rodare</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">164027792</subfield>
    <subfield code="u">https://rodare.hzdr.de/record/2778/files/FeH_data_RODARE.tar.xz</subfield>
    <subfield code="z">md5:4bc7e02b8fd92e6847678d99c13a654f</subfield>
  </datafield>
  <controlfield tag="001">2778</controlfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Data publication: Machine Learning-Driven Structure Prediction for Iron Hydrides</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
220
30
views
downloads
All versions This version
Views 220220
Downloads 3030
Data volume 4.9 GB4.9 GB
Unique views 165165
Unique downloads 2323

Share

Cite as