Dataset Open Access

Data publication: Machine Learning-Driven Structure Prediction for Iron Hydrides

Tahmasbi, Hossein; Ramakrishna, Kushal; Lokamani, Mani; Cangi, Attila


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.14278/rodare.2778</identifier>
  <creators>
    <creator>
      <creatorName>Tahmasbi, Hossein</creatorName>
      <givenName>Hossein</givenName>
      <familyName>Tahmasbi</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3072-8217</nameIdentifier>
    </creator>
    <creator>
      <creatorName>Ramakrishna, Kushal</creatorName>
      <givenName>Kushal</givenName>
      <familyName>Ramakrishna</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-4211-2484</nameIdentifier>
    </creator>
    <creator>
      <creatorName>Lokamani, Mani</creatorName>
      <givenName>Mani</givenName>
      <familyName>Lokamani</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-8679-5905</nameIdentifier>
    </creator>
    <creator>
      <creatorName>Cangi, Attila</creatorName>
      <givenName>Attila</givenName>
      <familyName>Cangi</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9162-262X</nameIdentifier>
    </creator>
  </creators>
  <titles>
    <title>Data publication: Machine Learning-Driven Structure Prediction for Iron Hydrides</title>
  </titles>
  <publisher>Rodare</publisher>
  <publicationYear>2024</publicationYear>
  <dates>
    <date dateType="Issued">2024-03-25</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/2778</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-38894</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-37800</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.2777</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Here, we provide the training datasets and the resulting neural network potential for exploring the potential energy surfaces of the FeH system using the minima hopping method. Additionally, data for the minima structures identified in this work are included.&lt;/p&gt;</description>
  </descriptions>
</resource>
220
30
views
downloads
All versions This version
Views 220220
Downloads 3030
Data volume 4.9 GB4.9 GB
Unique views 165165
Unique downloads 2323

Share

Cite as