Dataset Open Access
Tahmasbi, Hossein; Ramakrishna, Kushal; Lokamani, Mani; Cangi, Attila
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Tahmasbi, Hossein</dc:creator> <dc:creator>Ramakrishna, Kushal</dc:creator> <dc:creator>Lokamani, Mani</dc:creator> <dc:creator>Cangi, Attila</dc:creator> <dc:date>2024-03-25</dc:date> <dc:description>Here, we provide the training datasets and the resulting neural network potential for exploring the potential energy surfaces of the FeH system using the minima hopping method. Additionally, data for the minima structures identified in this work are included.</dc:description> <dc:identifier>https://rodare.hzdr.de/record/2778</dc:identifier> <dc:identifier>10.14278/rodare.2778</dc:identifier> <dc:identifier>oai:rodare.hzdr.de:2778</dc:identifier> <dc:relation>url:https://www.hzdr.de/publications/Publ-38894</dc:relation> <dc:relation>url:https://www.hzdr.de/publications/Publ-37800</dc:relation> <dc:relation>doi:10.14278/rodare.2777</dc:relation> <dc:relation>url:https://rodare.hzdr.de/communities/rodare</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:title>Data publication: Machine Learning-Driven Structure Prediction for Iron Hydrides</dc:title> <dc:type>info:eu-repo/semantics/other</dc:type> <dc:type>dataset</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 220 | 220 |
Downloads | 30 | 30 |
Data volume | 4.9 GB | 4.9 GB |
Unique views | 165 | 165 |
Unique downloads | 23 | 23 |