Dataset Open Access

Data publication: Machine Learning-Driven Structure Prediction for Iron Hydrides

Tahmasbi, Hossein; Ramakrishna, Kushal; Lokamani, Mani; Cangi, Attila


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Tahmasbi, Hossein</dc:creator>
  <dc:creator>Ramakrishna, Kushal</dc:creator>
  <dc:creator>Lokamani, Mani</dc:creator>
  <dc:creator>Cangi, Attila</dc:creator>
  <dc:date>2024-03-25</dc:date>
  <dc:description>Here, we provide the training datasets and the resulting neural network potential for exploring the potential energy surfaces of the FeH system using the minima hopping method. Additionally, data for the minima structures identified in this work are included.</dc:description>
  <dc:identifier>https://rodare.hzdr.de/record/2778</dc:identifier>
  <dc:identifier>10.14278/rodare.2778</dc:identifier>
  <dc:identifier>oai:rodare.hzdr.de:2778</dc:identifier>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-38894</dc:relation>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-37800</dc:relation>
  <dc:relation>doi:10.14278/rodare.2777</dc:relation>
  <dc:relation>url:https://rodare.hzdr.de/communities/rodare</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:title>Data publication: Machine Learning-Driven Structure Prediction for Iron Hydrides</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>dataset</dc:type>
</oai_dc:dc>
220
30
views
downloads
All versions This version
Views 220220
Downloads 3030
Data volume 4.9 GB4.9 GB
Unique views 165165
Unique downloads 2323

Share

Cite as