Dataset Closed Access

Data publication: Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patients

Starke, Sebastian; Zwanenburg, Alex; Leger, Karoline; Lohaus, Fabian; Linge, Annett; Schreiber, Andreas; Kalinauskaite, Goda; Tinhofer, Inge; Guberina, Nika; Guberina, Maja; Balermpas, Panagiotis; von der Grün, Jens; Ganswindt, Ute; Belka, Claus; Peeken, Jan C.; Combs, Stephanie E.; Böke, Simon; Zips, Daniel; Richter, Christian; Troost, Esther Gera Cornelia; Krause, Mechthild; Baumann, Michael; Löck, Steffen


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Starke, Sebastian</dc:creator>
  <dc:creator>Zwanenburg, Alex</dc:creator>
  <dc:creator>Leger, Karoline</dc:creator>
  <dc:creator>Lohaus, Fabian</dc:creator>
  <dc:creator>Linge, Annett</dc:creator>
  <dc:creator>Schreiber, Andreas</dc:creator>
  <dc:creator>Kalinauskaite, Goda</dc:creator>
  <dc:creator>Tinhofer, Inge</dc:creator>
  <dc:creator>Guberina, Nika</dc:creator>
  <dc:creator>Guberina, Maja</dc:creator>
  <dc:creator>Balermpas, Panagiotis</dc:creator>
  <dc:creator>von der Grün, Jens</dc:creator>
  <dc:creator>Ganswindt, Ute</dc:creator>
  <dc:creator>Belka, Claus</dc:creator>
  <dc:creator>Peeken, Jan C.</dc:creator>
  <dc:creator>Combs, Stephanie E.</dc:creator>
  <dc:creator>Böke, Simon</dc:creator>
  <dc:creator>Zips, Daniel</dc:creator>
  <dc:creator>Richter, Christian</dc:creator>
  <dc:creator>Troost, Esther Gera Cornelia</dc:creator>
  <dc:creator>Krause, Mechthild</dc:creator>
  <dc:creator>Baumann, Michael</dc:creator>
  <dc:creator>Löck, Steffen</dc:creator>
  <dc:date>2023-08-16</dc:date>
  <dc:description>This dataset contains the model checkpoints, predictions and performance metrics for the multitask neural networks presented in the corresponding manuscript.</dc:description>
  <dc:identifier>https://rodare.hzdr.de/record/2438</dc:identifier>
  <dc:identifier>10.14278/rodare.2438</dc:identifier>
  <dc:identifier>oai:rodare.hzdr.de:2438</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>doi:10.3390/cancers15194897</dc:relation>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-37408</dc:relation>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-37388</dc:relation>
  <dc:relation>url:https://www.hzdr.de/publications/Publ-39339</dc:relation>
  <dc:relation>doi:10.14278/rodare.2437</dc:relation>
  <dc:relation>url:https://rodare.hzdr.de/communities/oncoray</dc:relation>
  <dc:relation>url:https://rodare.hzdr.de/communities/rodare</dc:relation>
  <dc:rights>info:eu-repo/semantics/closedAccess</dc:rights>
  <dc:subject>survival analysis</dc:subject>
  <dc:subject>vision transformer</dc:subject>
  <dc:subject>convolutional neural network</dc:subject>
  <dc:subject>multitask learning</dc:subject>
  <dc:subject>tumor segmentation</dc:subject>
  <dc:subject>head and neck cancer</dc:subject>
  <dc:subject>Cox proportional hazards</dc:subject>
  <dc:subject>loco-regional control</dc:subject>
  <dc:subject>progression-free survival</dc:subject>
  <dc:subject>discrete-time survival models</dc:subject>
  <dc:title>Data publication: Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patients</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>dataset</dc:type>
</oai_dc:dc>
136
0
views
downloads
All versions This version
Views 136136
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 128128
Unique downloads 00

Share

Cite as