Dataset Closed Access

Data publication: Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patients

Starke, Sebastian; Zwanenburg, Alex; Leger, Karoline; Lohaus, Fabian; Linge, Annett; Schreiber, Andreas; Kalinauskaite, Goda; Tinhofer, Inge; Guberina, Nika; Guberina, Maja; Balermpas, Panagiotis; von der Grün, Jens; Ganswindt, Ute; Belka, Claus; Peeken, Jan C.; Combs, Stephanie E.; Böke, Simon; Zips, Daniel; Richter, Christian; Troost, Esther Gera Cornelia; Krause, Mechthild; Baumann, Michael; Löck, Steffen


BibTeX Export

@misc{starke_sebastian_2023_2438,
  author       = {Starke, Sebastian and
                  Zwanenburg, Alex and
                  Leger, Karoline and
                  Lohaus, Fabian and
                  Linge, Annett and
                  Schreiber, Andreas and
                  Kalinauskaite, Goda and
                  Tinhofer, Inge and
                  Guberina, Nika and
                  Guberina, Maja and
                  Balermpas, Panagiotis and
                  von der Grün, Jens and
                  Ganswindt, Ute and
                  Belka, Claus and
                  Peeken, Jan C. and
                  Combs, Stephanie E. and
                  Böke, Simon and
                  Zips, Daniel and
                  Richter, Christian and
                  Troost, Esther Gera Cornelia and
                  Krause, Mechthild and
                  Baumann, Michael and
                  Löck, Steffen},
  title        = {{Data publication: Multitask learning with 
                   convolutional neural networks and vision
                   transformers can improve outcome prediction for
                   head and neck cancer patients}},
  month        = aug,
  year         = 2023,
  doi          = {10.14278/rodare.2438},
  url          = {https://doi.org/10.14278/rodare.2438}
}
136
0
views
downloads
All versions This version
Views 136136
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 128128
Unique downloads 00

Share

Cite as