Dataset Closed Access

Data publication: Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patients

Starke, Sebastian; Zwanenburg, Alex; Leger, Karoline; Lohaus, Fabian; Linge, Annett; Schreiber, Andreas; Kalinauskaite, Goda; Tinhofer, Inge; Guberina, Nika; Guberina, Maja; Balermpas, Panagiotis; von der Grün, Jens; Ganswindt, Ute; Belka, Claus; Peeken, Jan C.; Combs, Stephanie E.; Böke, Simon; Zips, Daniel; Richter, Christian; Troost, Esther Gera Cornelia; Krause, Mechthild; Baumann, Michael; Löck, Steffen


JSON Export

{
  "revision": 6, 
  "owners": [
    163
  ], 
  "conceptdoi": "10.14278/rodare.2437", 
  "id": 2438, 
  "stats": {
    "volume": 0.0, 
    "unique_downloads": 0.0, 
    "version_unique_downloads": 0.0, 
    "unique_views": 397.0, 
    "downloads": 0.0, 
    "version_unique_views": 397.0, 
    "version_views": 438.0, 
    "version_downloads": 0.0, 
    "version_volume": 0.0, 
    "views": 438.0
  }, 
  "conceptrecid": "2437", 
  "metadata": {
    "pub_id": "37408", 
    "creators": [
      {
        "name": "Starke, Sebastian", 
        "orcid": "0000-0001-5007-1868"
      }, 
      {
        "name": "Zwanenburg, Alex", 
        "affiliation": "National Center for Tumor Diseases (NCT)"
      }, 
      {
        "name": "Leger, Karoline", 
        "affiliation": "Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus"
      }, 
      {
        "name": "Lohaus, Fabian", 
        "affiliation": "Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus"
      }, 
      {
        "name": "Linge, Annett", 
        "affiliation": "Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus"
      }, 
      {
        "name": "Schreiber, Andreas", 
        "affiliation": "Department of Radiotherapy, Hospital Dresden-Friedrichstadt"
      }, 
      {
        "name": "Kalinauskaite, Goda", 
        "affiliation": "Department of Radiooncology and Radiotherapy, Charit\u00e9 University Hospital"
      }, 
      {
        "name": "Tinhofer, Inge", 
        "affiliation": "Department of Radiooncology and Radiotherapy, Charit\u00e9 University Hospital"
      }, 
      {
        "name": "Guberina, Nika", 
        "affiliation": "Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen"
      }, 
      {
        "name": "Guberina, Maja", 
        "affiliation": "Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen"
      }, 
      {
        "name": "Balermpas, Panagiotis", 
        "affiliation": "Department of Radiotherapy and Oncology, Goethe-University Frankfurt"
      }, 
      {
        "name": "von der Gr\u00fcn, Jens", 
        "affiliation": "Department of Radiotherapy and Oncology, Goethe-University Frankfurt"
      }, 
      {
        "name": "Ganswindt, Ute", 
        "affiliation": "Department of Radiation Oncology, Medical University of Innsbruck"
      }, 
      {
        "name": "Belka, Claus", 
        "affiliation": "Department of Radiation Oncology, Ludwig-Maximilians-Universit\u00e4t"
      }, 
      {
        "name": "Peeken, Jan C.", 
        "affiliation": "Department of Radiation Oncology, Technische Universit\u00e4t M\u00fcnchen"
      }, 
      {
        "name": "Combs, Stephanie E.", 
        "affiliation": "Department of Radiation Oncology, Technische Universit\u00e4t M\u00fcnchen"
      }, 
      {
        "name": "B\u00f6ke, Simon", 
        "affiliation": "Department of Radiation Oncology, Faculty of Medicine and University Hospital T\u00fcbingen"
      }, 
      {
        "name": "Zips, Daniel", 
        "affiliation": "Department of Radiation Oncology, Faculty of Medicine and University Hospital T\u00fcbingen"
      }, 
      {
        "name": "Richter, Christian", 
        "orcid": "0000-0003-4261-4214"
      }, 
      {
        "name": "Troost, Esther Gera Cornelia", 
        "orcid": "0000-0001-9550-9050"
      }, 
      {
        "name": "Krause, Mechthild", 
        "orcid": "0000-0003-1776-9556"
      }, 
      {
        "name": "Baumann, Michael", 
        "affiliation": "German Cancer Research Center (DKFZ)"
      }, 
      {
        "name": "L\u00f6ck, Steffen", 
        "orcid": "0000-0002-7017-3738"
      }
    ], 
    "access_right": "closed", 
    "publication_date": "2023-08-16", 
    "access_right_category": "danger", 
    "language": "eng", 
    "related_identifiers": [
      {
        "identifier": "10.3390/cancers15194897", 
        "relation": "isReferencedBy", 
        "scheme": "doi"
      }, 
      {
        "identifier": "https://www.hzdr.de/publications/Publ-37408", 
        "relation": "isIdenticalTo", 
        "scheme": "url"
      }, 
      {
        "identifier": "https://www.hzdr.de/publications/Publ-37388", 
        "relation": "isReferencedBy", 
        "scheme": "url"
      }, 
      {
        "identifier": "https://www.hzdr.de/publications/Publ-39339", 
        "relation": "isReferencedBy", 
        "scheme": "url"
      }, 
      {
        "identifier": "10.14278/rodare.2437", 
        "relation": "isVersionOf", 
        "scheme": "doi"
      }
    ], 
    "keywords": [
      "survival analysis", 
      "vision transformer", 
      "convolutional neural network", 
      "multitask learning", 
      "tumor segmentation", 
      "head and neck cancer", 
      "Cox proportional hazards", 
      "loco-regional control", 
      "progression-free survival", 
      "discrete-time survival models"
    ], 
    "doi": "10.14278/rodare.2438", 
    "description": "<p>This dataset contains the model checkpoints, predictions and performance metrics for the multitask neural networks presented in the corresponding manuscript.</p>", 
    "resource_type": {
      "title": "Dataset", 
      "type": "dataset"
    }, 
    "doc_id": "1", 
    "communities": [
      {
        "id": "oncoray"
      }, 
      {
        "id": "rodare"
      }
    ], 
    "title": "Data publication: Multitask learning with convolutional neural networks and vision transformers can improve outcome prediction for head and neck cancer patients", 
    "relations": {
      "version": [
        {
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "2438"
          }, 
          "index": 0, 
          "is_last": true, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "2437"
          }, 
          "count": 1
        }
      ]
    }
  }, 
  "doi": "10.14278/rodare.2438", 
  "links": {
    "badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.2438.svg", 
    "doi": "https://doi.org/10.14278/rodare.2438", 
    "conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.2437.svg", 
    "conceptdoi": "https://doi.org/10.14278/rodare.2437", 
    "html": "https://rodare.hzdr.de/record/2438", 
    "latest": "https://rodare.hzdr.de/api/records/2438", 
    "latest_html": "https://rodare.hzdr.de/record/2438"
  }, 
  "updated": "2024-08-12T08:07:27.249949+00:00", 
  "created": "2023-08-28T06:37:20.494985+00:00"
}
438
0
views
downloads
All versions This version
Views 438438
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 397397
Unique downloads 00

Share

Cite as