Presentation Open Access

Low Prandtl Number Rayleigh-Bénard Convection in a Vertical Magnetic Field

Schindler, Felix; Zürner, Till; Vogt, Tobias; Eckert, Sven; Schumacher, Jörg


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Zürner, Till</subfield>
    <subfield code="u">Technische Universität Ilmenau</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Vogt, Tobias</subfield>
    <subfield code="u">Helmholtz-Zentrum Dresden-Rossendorf</subfield>
    <subfield code="0">(orcid)0000-0002-0022-5758</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Eckert, Sven</subfield>
    <subfield code="u">Helmholtz-Zentrum Dresden-Rossendorf</subfield>
    <subfield code="0">(orcid)0000-0003-1639-5417</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Schumacher, Jörg</subfield>
    <subfield code="u">Technische Universität Ilmenau</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">presentation</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-07-01</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">5942403</subfield>
    <subfield code="u">https://rodare.hzdr.de/record/228/files/07002_01_pamir_presentation_only_pics.pptx</subfield>
    <subfield code="z">md5:a69cd6864d127d3186a8874300155e01</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">44168</subfield>
    <subfield code="u">https://rodare.hzdr.de/record/228/files/SCHINDLER_Felix_A1_Abstract1_pamir2019.pdf</subfield>
    <subfield code="z">md5:1af17b4c9be01972fc18450a41325a3b</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Rayleigh-Bénard-Convection</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Magnetohydrodynamic</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">low Prandtl Number</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">liquid metal</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Ultrasound velocimetry</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Support by Deutsche Forschungsgemeinschaft with grants VO 2332/1-1 and SCHU 1410/29-1</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.14278/rodare.228</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Schindler, Felix</subfield>
    <subfield code="u">Helmholtz-Zentrum Dresden-Rossendorf</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Lecture (Conference)&lt;/p&gt;

&lt;p&gt;11th PAMIR International Conference- Fundamental and Applied MHD July 1-5, 2019, Reims, EVEM France&lt;/p&gt;

&lt;p&gt;We are investigating turbulent Rayleigh-B&amp;eacute;nard convection in liquid metal under the&lt;br&gt;
influence of a vertical magnetic field. Utilizing a combination of thermocouple (TC) and&lt;br&gt;
ultrasound-Doppler-velocimetry (UDV) measurements gives us the possibility to directly&lt;br&gt;
determine the temperature and velocity field, respectively. Further this gives us the&lt;br&gt;
possibility to observe changes in the large-scale flow structure.&lt;br&gt;
By applying magnetic fields to the liquid metal convection, we quantified changes of heat&lt;br&gt;
and momentum transport in the liquid metal alloy GaInSn. The experimental results of our&lt;br&gt;
setup agree well with theory findings and direct numerical simulations of the dynamics in&lt;br&gt;
our convection cell. The requirement of large computing power at these parameters makes&lt;br&gt;
it hard to simulate long-term dynamics with time scales from minutes to several hours. Thus&lt;br&gt;
to investigate slow developing dynamics like sloshing, rotation, or deformation of the large-&lt;br&gt;
scale flow structure model experiments are indispensable.&lt;br&gt;
We demonstrate the suppression of the convective flow by a vertical magnetic field in a&lt;br&gt;
cylindrical cell of aspect ratio 1. In this setup Rayleigh numbers up to 6&amp;middot;107 are&lt;br&gt;
investigated. The flow structure at low Hartmann numbers is a single roll large scale&lt;br&gt;
circulation (LSC). Increasing the Hartmann number leads to a transition from the single-roll&lt;br&gt;
LSC into a cell structure. An even stronger magnetic field supresses the flow in the center&lt;br&gt;
of the cell completely and expels the flow to the side walls.&lt;br&gt;
Even above the critical Hartmann numbers corresponding to the Chandrasekhar limit for&lt;br&gt;
the onset of magnetoconvection in a fluid layer without lateral boundaries we still observe&lt;br&gt;
remarkable flows near the side walls. The destabilising effect of the non-conducting side&lt;br&gt;
walls was predicted by theory and simulations, and is here for the first time experimentally&lt;br&gt;
confirmed.&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:rodare.hzdr.de:228</subfield>
    <subfield code="p">user-fwd</subfield>
    <subfield code="p">user-hzdr</subfield>
    <subfield code="p">user-rodare</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">10.1017/S0022112096004491</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">10.1103/physreve.62.r4520</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">10.1017/jfm.2018.479</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">10.1073/pnas.1417741112</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">10.1017/jfm.2019.556</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">https://www.hzdr.de/publications/Publ-28698</subfield>
  </datafield>
  <controlfield tag="005">20220112103649.0</controlfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Low Prandtl Number Rayleigh-Bénard Convection in a Vertical Magnetic Field</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-fwd</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-hzdr</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-rodare</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <controlfield tag="001">228</controlfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="a">10.1017/S0022112096004491</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="n">doi</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="a">10.1103/physreve.62.r4520</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="n">doi</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="a">10.1017/jfm.2018.479</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="n">doi</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="a">10.1073/pnas.1417741112</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="n">doi</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="a">10.1017/jfm.2019.556</subfield>
    <subfield code="i">isSupplementedBy</subfield>
    <subfield code="n">doi</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="a">https://www.hzdr.de/publications/Publ-28698</subfield>
    <subfield code="i">isSupplementedBy</subfield>
    <subfield code="n">url</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="a">https://www.hzdr.de/publications/Publ-30439</subfield>
    <subfield code="i">isIdenticalTo</subfield>
    <subfield code="n">url</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="a">10.14278/rodare.227</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="n">doi</subfield>
  </datafield>
</record>
252
142
views
downloads
All versions This version
Views 252252
Downloads 142142
Data volume 147.8 MB147.8 MB
Unique views 212212
Unique downloads 107107

Share

Cite as