Presentation Open Access

Low Prandtl Number Rayleigh-Bénard Convection in a Vertical Magnetic Field

Schindler, Felix; Zürner, Till; Vogt, Tobias; Eckert, Sven; Schumacher, Jörg


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.14278/rodare.228</identifier>
  <creators>
    <creator>
      <creatorName>Schindler, Felix</creatorName>
      <givenName>Felix</givenName>
      <familyName>Schindler</familyName>
      <affiliation>Helmholtz-Zentrum Dresden-Rossendorf</affiliation>
    </creator>
    <creator>
      <creatorName>Zürner, Till</creatorName>
      <givenName>Till</givenName>
      <familyName>Zürner</familyName>
      <affiliation>Technische Universität Ilmenau</affiliation>
    </creator>
    <creator>
      <creatorName>Vogt, Tobias</creatorName>
      <givenName>Tobias</givenName>
      <familyName>Vogt</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-0022-5758</nameIdentifier>
      <affiliation>Helmholtz-Zentrum Dresden-Rossendorf</affiliation>
    </creator>
    <creator>
      <creatorName>Eckert, Sven</creatorName>
      <givenName>Sven</givenName>
      <familyName>Eckert</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1639-5417</nameIdentifier>
      <affiliation>Helmholtz-Zentrum Dresden-Rossendorf</affiliation>
    </creator>
    <creator>
      <creatorName>Schumacher, Jörg</creatorName>
      <givenName>Jörg</givenName>
      <familyName>Schumacher</familyName>
      <affiliation>Technische Universität Ilmenau</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Low Prandtl Number Rayleigh-Bénard Convection in a Vertical Magnetic Field</title>
  </titles>
  <publisher>Rodare</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>Rayleigh-Bénard-Convection</subject>
    <subject>Magnetohydrodynamic</subject>
    <subject>low Prandtl Number</subject>
    <subject>liquid metal</subject>
    <subject>Ultrasound velocimetry</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-07-01</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Presentation</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/228</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsCitedBy">10.1017/S0022112096004491</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsCitedBy">10.1103/physreve.62.r4520</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsCitedBy">10.1017/jfm.2018.479</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsCitedBy">10.1073/pnas.1417741112</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsSupplementedBy">10.1017/jfm.2019.556</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementedBy">https://www.hzdr.de/publications/Publ-28698</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-30439</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.227</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/fwd</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/hzdr</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
  </relatedIdentifiers>
  <version>1.0</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Lecture (Conference)&lt;/p&gt;

&lt;p&gt;11th PAMIR International Conference- Fundamental and Applied MHD July 1-5, 2019, Reims, EVEM France&lt;/p&gt;

&lt;p&gt;We are investigating turbulent Rayleigh-B&amp;eacute;nard convection in liquid metal under the&lt;br&gt;
influence of a vertical magnetic field. Utilizing a combination of thermocouple (TC) and&lt;br&gt;
ultrasound-Doppler-velocimetry (UDV) measurements gives us the possibility to directly&lt;br&gt;
determine the temperature and velocity field, respectively. Further this gives us the&lt;br&gt;
possibility to observe changes in the large-scale flow structure.&lt;br&gt;
By applying magnetic fields to the liquid metal convection, we quantified changes of heat&lt;br&gt;
and momentum transport in the liquid metal alloy GaInSn. The experimental results of our&lt;br&gt;
setup agree well with theory findings and direct numerical simulations of the dynamics in&lt;br&gt;
our convection cell. The requirement of large computing power at these parameters makes&lt;br&gt;
it hard to simulate long-term dynamics with time scales from minutes to several hours. Thus&lt;br&gt;
to investigate slow developing dynamics like sloshing, rotation, or deformation of the large-&lt;br&gt;
scale flow structure model experiments are indispensable.&lt;br&gt;
We demonstrate the suppression of the convective flow by a vertical magnetic field in a&lt;br&gt;
cylindrical cell of aspect ratio 1. In this setup Rayleigh numbers up to 6&amp;middot;107 are&lt;br&gt;
investigated. The flow structure at low Hartmann numbers is a single roll large scale&lt;br&gt;
circulation (LSC). Increasing the Hartmann number leads to a transition from the single-roll&lt;br&gt;
LSC into a cell structure. An even stronger magnetic field supresses the flow in the center&lt;br&gt;
of the cell completely and expels the flow to the side walls.&lt;br&gt;
Even above the critical Hartmann numbers corresponding to the Chandrasekhar limit for&lt;br&gt;
the onset of magnetoconvection in a fluid layer without lateral boundaries we still observe&lt;br&gt;
remarkable flows near the side walls. The destabilising effect of the non-conducting side&lt;br&gt;
walls was predicted by theory and simulations, and is here for the first time experimentally&lt;br&gt;
confirmed.&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;</description>
    <description descriptionType="Other">Support by Deutsche Forschungsgemeinschaft with grants VO 2332/1-1 and SCHU 1410/29-1</description>
    <description descriptionType="Other">{"references": ["10.1017/S0022112096004491", "10.1103/physreve.62.r4520", "10.1017/jfm.2018.479", "10.1073/pnas.1417741112", "10.1017/jfm.2019.556", "https://www.hzdr.de/publications/Publ-28698"]}</description>
  </descriptions>
</resource>
226
134
views
downloads
All versions This version
Views 226226
Downloads 134134
Data volume 147.5 MB147.5 MB
Unique views 187187
Unique downloads 9999

Share

Cite as