Presentation Open Access

Low Prandtl Number Rayleigh-Bénard Convection in a Vertical Magnetic Field

Schindler, Felix; Zürner, Till; Vogt, Tobias; Eckert, Sven; Schumacher, Jörg


JSON Export

{
  "links": {
    "badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.228.svg", 
    "doi": "https://doi.org/10.14278/rodare.228", 
    "conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.227.svg", 
    "conceptdoi": "https://doi.org/10.14278/rodare.227", 
    "bucket": "https://rodare.hzdr.de/api/files/4c77ef04-334f-4e17-99a8-9b08f9e43c92", 
    "html": "https://rodare.hzdr.de/record/228", 
    "latest": "https://rodare.hzdr.de/api/records/228", 
    "latest_html": "https://rodare.hzdr.de/record/228"
  }, 
  "revision": 9, 
  "owners": [
    154
  ], 
  "created": "2020-01-14T14:32:28.902968+00:00", 
  "metadata": {
    "title": "Low Prandtl Number Rayleigh-B\u00e9nard Convection in a Vertical Magnetic Field", 
    "relations": {
      "version": [
        {
          "index": 0, 
          "count": 1, 
          "parent": {
            "pid_value": "227", 
            "pid_type": "recid"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_value": "228", 
            "pid_type": "recid"
          }
        }
      ]
    }, 
    "notes": "Support by Deutsche Forschungsgemeinschaft with grants VO 2332/1-1 and SCHU 1410/29-1", 
    "pub_id": "30439", 
    "doc_id": "1", 
    "access_right_category": "success", 
    "language": "eng", 
    "access_right": "open", 
    "creators": [
      {
        "affiliation": "Helmholtz-Zentrum Dresden-Rossendorf", 
        "name": "Schindler, Felix"
      }, 
      {
        "affiliation": "Technische Universit\u00e4t Ilmenau", 
        "name": "Z\u00fcrner, Till"
      }, 
      {
        "affiliation": "Helmholtz-Zentrum Dresden-Rossendorf", 
        "name": "Vogt, Tobias", 
        "orcid": "0000-0002-0022-5758"
      }, 
      {
        "affiliation": "Helmholtz-Zentrum Dresden-Rossendorf", 
        "name": "Eckert, Sven", 
        "orcid": "0000-0003-1639-5417"
      }, 
      {
        "affiliation": "Technische Universit\u00e4t Ilmenau", 
        "name": "Schumacher, J\u00f6rg"
      }
    ], 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "publication_date": "2019-07-01", 
    "resource_type": {
      "title": "Presentation", 
      "type": "presentation"
    }, 
    "description": "<p>Lecture (Conference)</p>\n\n<p>11th PAMIR International Conference- Fundamental and Applied MHD July 1-5, 2019, Reims, EVEM France</p>\n\n<p>We are investigating turbulent Rayleigh-B&eacute;nard convection in liquid metal under the<br>\ninfluence of a vertical magnetic field. Utilizing a combination of thermocouple (TC) and<br>\nultrasound-Doppler-velocimetry (UDV) measurements gives us the possibility to directly<br>\ndetermine the temperature and velocity field, respectively. Further this gives us the<br>\npossibility to observe changes in the large-scale flow structure.<br>\nBy applying magnetic fields to the liquid metal convection, we quantified changes of heat<br>\nand momentum transport in the liquid metal alloy GaInSn. The experimental results of our<br>\nsetup agree well with theory findings and direct numerical simulations of the dynamics in<br>\nour convection cell. The requirement of large computing power at these parameters makes<br>\nit hard to simulate long-term dynamics with time scales from minutes to several hours. Thus<br>\nto investigate slow developing dynamics like sloshing, rotation, or deformation of the large-<br>\nscale flow structure model experiments are indispensable.<br>\nWe demonstrate the suppression of the convective flow by a vertical magnetic field in a<br>\ncylindrical cell of aspect ratio 1. In this setup Rayleigh numbers up to 6&middot;107 are<br>\ninvestigated. The flow structure at low Hartmann numbers is a single roll large scale<br>\ncirculation (LSC). Increasing the Hartmann number leads to a transition from the single-roll<br>\nLSC into a cell structure. An even stronger magnetic field supresses the flow in the center<br>\nof the cell completely and expels the flow to the side walls.<br>\nEven above the critical Hartmann numbers corresponding to the Chandrasekhar limit for<br>\nthe onset of magnetoconvection in a fluid layer without lateral boundaries we still observe<br>\nremarkable flows near the side walls. The destabilising effect of the non-conducting side<br>\nwalls was predicted by theory and simulations, and is here for the first time experimentally<br>\nconfirmed.</p>\n\n<p>&nbsp;</p>", 
    "related_identifiers": [
      {
        "relation": "isCitedBy", 
        "scheme": "doi", 
        "identifier": "10.1017/S0022112096004491"
      }, 
      {
        "relation": "isCitedBy", 
        "scheme": "doi", 
        "identifier": "10.1103/physreve.62.r4520"
      }, 
      {
        "relation": "isCitedBy", 
        "scheme": "doi", 
        "identifier": "10.1017/jfm.2018.479"
      }, 
      {
        "relation": "isCitedBy", 
        "scheme": "doi", 
        "identifier": "10.1073/pnas.1417741112"
      }, 
      {
        "relation": "isSupplementedBy", 
        "scheme": "doi", 
        "identifier": "10.1017/jfm.2019.556"
      }, 
      {
        "relation": "isSupplementedBy", 
        "scheme": "url", 
        "identifier": "https://www.hzdr.de/publications/Publ-28698"
      }, 
      {
        "relation": "isIdenticalTo", 
        "scheme": "url", 
        "identifier": "https://www.hzdr.de/publications/Publ-30439"
      }, 
      {
        "relation": "isVersionOf", 
        "scheme": "doi", 
        "identifier": "10.14278/rodare.227"
      }
    ], 
    "communities": [
      {
        "id": "fwd"
      }, 
      {
        "id": "hzdr"
      }, 
      {
        "id": "rodare"
      }
    ], 
    "doi": "10.14278/rodare.228", 
    "references": [
      "10.1017/S0022112096004491", 
      "10.1103/physreve.62.r4520", 
      "10.1017/jfm.2018.479", 
      "10.1073/pnas.1417741112", 
      "10.1017/jfm.2019.556", 
      "https://www.hzdr.de/publications/Publ-28698"
    ], 
    "keywords": [
      "Rayleigh-B\u00e9nard-Convection", 
      "Magnetohydrodynamic", 
      "low Prandtl Number", 
      "liquid metal", 
      "Ultrasound velocimetry"
    ], 
    "version": "1.0"
  }, 
  "stats": {
    "volume": 147829496.0, 
    "unique_downloads": 107.0, 
    "version_unique_downloads": 107.0, 
    "unique_views": 212.0, 
    "downloads": 142.0, 
    "version_unique_views": 212.0, 
    "version_views": 252.0, 
    "version_downloads": 142.0, 
    "version_volume": 147829496.0, 
    "views": 252.0
  }, 
  "conceptrecid": "227", 
  "doi": "10.14278/rodare.228", 
  "updated": "2022-01-12T10:36:49.055867+00:00", 
  "conceptdoi": "10.14278/rodare.227", 
  "id": 228, 
  "files": [
    {
      "links": {
        "self": "https://rodare.hzdr.de/api/files/4c77ef04-334f-4e17-99a8-9b08f9e43c92/07002_01_pamir_presentation_only_pics.pptx"
      }, 
      "bucket": "4c77ef04-334f-4e17-99a8-9b08f9e43c92", 
      "key": "07002_01_pamir_presentation_only_pics.pptx", 
      "size": 5942403, 
      "checksum": "md5:a69cd6864d127d3186a8874300155e01", 
      "type": "pptx"
    }, 
    {
      "links": {
        "self": "https://rodare.hzdr.de/api/files/4c77ef04-334f-4e17-99a8-9b08f9e43c92/SCHINDLER_Felix_A1_Abstract1_pamir2019.pdf"
      }, 
      "bucket": "4c77ef04-334f-4e17-99a8-9b08f9e43c92", 
      "key": "SCHINDLER_Felix_A1_Abstract1_pamir2019.pdf", 
      "size": 44168, 
      "checksum": "md5:1af17b4c9be01972fc18450a41325a3b", 
      "type": "pdf"
    }
  ]
}
252
142
views
downloads
All versions This version
Views 252252
Downloads 142142
Data volume 147.8 MB147.8 MB
Unique views 212212
Unique downloads 107107

Share

Cite as