Dataset Open Access
Fan, Kai; Dhammapala, Ranil; Harrington, Kyle; Lamb, Brian; Lee, Yun Ha
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Fan, Kai</dc:creator> <dc:creator>Dhammapala, Ranil</dc:creator> <dc:creator>Harrington, Kyle</dc:creator> <dc:creator>Lamb, Brian</dc:creator> <dc:creator>Lee, Yun Ha</dc:creator> <dc:date>2022-12-14</dc:date> <dc:description>These files are the training data of a machine learning modeling framework for the air quality forecasts in the Pacific Northwest (PNW), USA. O3.zip contains the AQS observations data of O3. PM_FRM.zip contains the AQS data of PM2.5 using federal reference methods (FRM). PM_nFRM.zip contains the AQS data of PM2.5 using “FRM-like” methods. WRF_pkl.zip contains the archived WRF data for the AQS sites in the PNW.</dc:description> <dc:identifier>https://rodare.hzdr.de/record/2029</dc:identifier> <dc:identifier>10.14278/rodare.2029</dc:identifier> <dc:identifier>oai:rodare.hzdr.de:2029</dc:identifier> <dc:relation>url:https://www.hzdr.de/publications/Publ-35834</dc:relation> <dc:relation>url:https://www.hzdr.de/publications/Publ-35780</dc:relation> <dc:relation>doi:10.3389/fdata.2023.1124148</dc:relation> <dc:relation>doi:10.14278/rodare.2028</dc:relation> <dc:relation>url:https://rodare.hzdr.de/communities/rodare</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:title>Training data of a machine learning modeling framework for the air quality forecasts in the Pacific Northwest, USA.</dc:title> <dc:type>info:eu-repo/semantics/other</dc:type> <dc:type>dataset</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 317 | 317 |
Downloads | 125 | 125 |
Data volume | 55.1 GB | 55.1 GB |
Unique views | 252 | 252 |
Unique downloads | 56 | 56 |
Fan, Kai, Dhammapala, Ranil, Harrington, Kyle, Lamb, Brian, & Lee, Yun Ha. (2022). Training data of a machine learning modeling framework for the air quality forecasts in the Pacific Northwest, USA. [Data set]. Rodare. http://doi.org/10.14278/rodare.2029