Dataset Open Access
Fan, Kai;
Dhammapala, Ranil;
Harrington, Kyle;
Lamb, Brian;
Lee, Yun Ha
{
"created": "2022-12-14T15:05:38.283582+00:00",
"doi": "10.14278/rodare.2029",
"revision": 8,
"files": [
{
"size": 130794677,
"bucket": "af54a005-7bb1-4504-9b84-593a73718cb7",
"key": "O3.zip",
"type": "zip",
"links": {
"self": "https://rodare.hzdr.de/api/files/af54a005-7bb1-4504-9b84-593a73718cb7/O3.zip"
},
"checksum": "md5:64ae0bbadd36040492aec6413c8487b2"
},
{
"size": 33719961,
"bucket": "af54a005-7bb1-4504-9b84-593a73718cb7",
"key": "PM_FRM.zip",
"type": "zip",
"links": {
"self": "https://rodare.hzdr.de/api/files/af54a005-7bb1-4504-9b84-593a73718cb7/PM_FRM.zip"
},
"checksum": "md5:975a29ede7794ba6fe7c1e6f56047e18"
},
{
"size": 69507829,
"bucket": "af54a005-7bb1-4504-9b84-593a73718cb7",
"key": "PM_nFRM.zip",
"type": "zip",
"links": {
"self": "https://rodare.hzdr.de/api/files/af54a005-7bb1-4504-9b84-593a73718cb7/PM_nFRM.zip"
},
"checksum": "md5:54e2846e53f29efaffbd49c6bf27744b"
},
{
"size": 1546165398,
"bucket": "af54a005-7bb1-4504-9b84-593a73718cb7",
"key": "WRF_pkl.zip",
"type": "zip",
"links": {
"self": "https://rodare.hzdr.de/api/files/af54a005-7bb1-4504-9b84-593a73718cb7/WRF_pkl.zip"
},
"checksum": "md5:ecccd00c0026b8165fa2992ed2d4a916"
}
],
"stats": {
"volume": 103076092644.0,
"unique_downloads": 106.0,
"version_unique_downloads": 106.0,
"unique_views": 603.0,
"downloads": 230.0,
"version_unique_views": 603.0,
"version_views": 704.0,
"version_downloads": 230.0,
"version_volume": 103076092644.0,
"views": 704.0
},
"metadata": {
"doc_id": "1",
"access_right_category": "success",
"communities": [
{
"id": "rodare"
}
],
"license": {
"id": "CC-BY-4.0"
},
"title": "Training data of a machine learning modeling framework\u00a0for the air quality forecasts in the Pacific Northwest, USA.",
"creators": [
{
"name": "Fan, Kai"
},
{
"name": "Dhammapala, Ranil"
},
{
"name": "Harrington, Kyle"
},
{
"name": "Lamb, Brian"
},
{
"orcid": "0000-0001-7478-2672",
"name": "Lee, Yun Ha"
}
],
"publication_date": "2022-12-14",
"pub_id": "35834",
"description": "<p>These files are the training data of a machine learning modeling framework for the air quality forecasts in the Pacific Northwest (PNW), USA.</p>\n\n<p>O3.zip contains the AQS observations data of O3.</p>\n\n<p>PM_FRM.zip contains the AQS data of PM2.5 using federal reference methods (FRM).</p>\n\n<p>PM_nFRM.zip contains the AQS data of PM2.5 using “FRM-like” methods.</p>\n\n<p>WRF_pkl.zip contains the archived WRF data for the AQS sites in the PNW.</p>",
"access_right": "open",
"doi": "10.14278/rodare.2029",
"related_identifiers": [
{
"relation": "isIdenticalTo",
"scheme": "url",
"identifier": "https://www.hzdr.de/publications/Publ-35834"
},
{
"relation": "isReferencedBy",
"scheme": "url",
"identifier": "https://www.hzdr.de/publications/Publ-35780"
},
{
"relation": "isReferencedBy",
"scheme": "doi",
"identifier": "10.3389/fdata.2023.1124148"
},
{
"relation": "isVersionOf",
"scheme": "doi",
"identifier": "10.14278/rodare.2028"
}
],
"resource_type": {
"type": "dataset",
"title": "Dataset"
},
"relations": {
"version": [
{
"count": 1,
"is_last": true,
"last_child": {
"pid_value": "2029",
"pid_type": "recid"
},
"index": 0,
"parent": {
"pid_value": "2028",
"pid_type": "recid"
}
}
]
}
},
"links": {
"badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.2029.svg",
"doi": "https://doi.org/10.14278/rodare.2029",
"conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.2028.svg",
"conceptdoi": "https://doi.org/10.14278/rodare.2028",
"bucket": "https://rodare.hzdr.de/api/files/af54a005-7bb1-4504-9b84-593a73718cb7",
"html": "https://rodare.hzdr.de/record/2029",
"latest": "https://rodare.hzdr.de/api/records/2029",
"latest_html": "https://rodare.hzdr.de/record/2029"
},
"updated": "2024-08-14T12:16:13.760135+00:00",
"owners": [
688
],
"conceptdoi": "10.14278/rodare.2028",
"id": 2029,
"conceptrecid": "2028"
}
| All versions | This version | |
|---|---|---|
| Views | 704 | 704 |
| Downloads | 230 | 230 |
| Data volume | 103.1 GB | 103.1 GB |
| Unique views | 603 | 603 |
| Unique downloads | 106 | 106 |