Dataset Open Access
Fan, Kai; Dhammapala, Ranil; Harrington, Kyle; Lamb, Brian; Lee, Yun Ha
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.14278/rodare.2029</identifier> <creators> <creator> <creatorName>Fan, Kai</creatorName> <givenName>Kai</givenName> <familyName>Fan</familyName> </creator> <creator> <creatorName>Dhammapala, Ranil</creatorName> <givenName>Ranil</givenName> <familyName>Dhammapala</familyName> </creator> <creator> <creatorName>Harrington, Kyle</creatorName> <givenName>Kyle</givenName> <familyName>Harrington</familyName> </creator> <creator> <creatorName>Lamb, Brian</creatorName> <givenName>Brian</givenName> <familyName>Lamb</familyName> </creator> <creator> <creatorName>Lee, Yun Ha</creatorName> <givenName>Yun Ha</givenName> <familyName>Lee</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-7478-2672</nameIdentifier> </creator> </creators> <titles> <title>Training data of a machine learning modeling framework for the air quality forecasts in the Pacific Northwest, USA.</title> </titles> <publisher>Rodare</publisher> <publicationYear>2022</publicationYear> <dates> <date dateType="Issued">2022-12-14</date> </dates> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/2029</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-35834</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-35780</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsReferencedBy">10.3389/fdata.2023.1124148</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.2028</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>These files are the training data of a machine learning modeling framework&nbsp;for the air quality forecasts in the Pacific Northwest (PNW), USA.</p> <p>O3.zip contains the AQS observations data of O3.</p> <p>PM_FRM.zip contains the AQS data of PM2.5 using&nbsp;federal reference methods (FRM).</p> <p>PM_nFRM.zip&nbsp;contains the AQS data of PM2.5 using&nbsp;&ldquo;FRM-like&rdquo;&nbsp;methods.</p> <p>WRF_pkl.zip contains the archived WRF data for the AQS sites in the PNW.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 283 | 283 |
Downloads | 93 | 93 |
Data volume | 42.5 GB | 42.5 GB |
Unique views | 220 | 220 |
Unique downloads | 47 | 47 |