Dataset Open Access
Fan, Kai;
Dhammapala, Ranil;
Harrington, Kyle;
Lamb, Brian;
Lee, Yun Ha
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="DOI">10.14278/rodare.2029</identifier>
<creators>
<creator>
<creatorName>Fan, Kai</creatorName>
<givenName>Kai</givenName>
<familyName>Fan</familyName>
</creator>
<creator>
<creatorName>Dhammapala, Ranil</creatorName>
<givenName>Ranil</givenName>
<familyName>Dhammapala</familyName>
</creator>
<creator>
<creatorName>Harrington, Kyle</creatorName>
<givenName>Kyle</givenName>
<familyName>Harrington</familyName>
</creator>
<creator>
<creatorName>Lamb, Brian</creatorName>
<givenName>Brian</givenName>
<familyName>Lamb</familyName>
</creator>
<creator>
<creatorName>Lee, Yun Ha</creatorName>
<givenName>Yun Ha</givenName>
<familyName>Lee</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-7478-2672</nameIdentifier>
</creator>
</creators>
<titles>
<title>Training data of a machine learning modeling framework for the air quality forecasts in the Pacific Northwest, USA.</title>
</titles>
<publisher>Rodare</publisher>
<publicationYear>2022</publicationYear>
<dates>
<date dateType="Issued">2022-12-14</date>
</dates>
<resourceType resourceTypeGeneral="Dataset"/>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/2029</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-35834</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsReferencedBy">https://www.hzdr.de/publications/Publ-35780</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsReferencedBy">10.3389/fdata.2023.1124148</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.2028</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>These files are the training data of a machine learning modeling framework&nbsp;for the air quality forecasts in the Pacific Northwest (PNW), USA.</p>
<p>O3.zip contains the AQS observations data of O3.</p>
<p>PM_FRM.zip contains the AQS data of PM2.5 using&nbsp;federal reference methods (FRM).</p>
<p>PM_nFRM.zip&nbsp;contains the AQS data of PM2.5 using&nbsp;&ldquo;FRM-like&rdquo;&nbsp;methods.</p>
<p>WRF_pkl.zip contains the archived WRF data for the AQS sites in the PNW.</p></description>
</descriptions>
</resource>
| All versions | This version | |
|---|---|---|
| Views | 704 | 704 |
| Downloads | 230 | 230 |
| Data volume | 103.1 GB | 103.1 GB |
| Unique views | 603 | 603 |
| Unique downloads | 106 | 106 |