Software Open Access
Stiller, Patrick;
Zhdanov, Maksim;
Rustamov, Jeyhun;
Bethke, Friedrich;
Hoffmann, Nico
{ "name": "Neural Solvers", "url": "https://rodare.hzdr.de/record/1194", "keywords": [ "PINNs", "PDEs", "Neural Solver", "Scalable AI" ], "datePublished": "2021-09-06", "contributor": [], "@type": "SoftwareSourceCode", "creator": [ { "name": "Stiller, Patrick", "@id": "https://orcid.org/0000-0003-1950-069X", "@type": "Person" }, { "name": "Zhdanov, Maksim", "@type": "Person" }, { "name": "Rustamov, Jeyhun", "@type": "Person" }, { "name": "Bethke, Friedrich", "@type": "Person" }, { "name": "Hoffmann, Nico", "@type": "Person" } ], "description": "<p>Neural Solvers are neural network-based solvers for partial differential equations and inverse problems. The framework implements scalable physics-informed neural networks Physics-informed neural networks allow strong scaling by design. Therefore, we have developed a framework that uses data parallelism to accelerate the training of physics-informed neural networks significantly. To implement data parallelism, we use the Horovod framework, which provides near-ideal speedup on multi-GPU regimes.</p>", "@id": "https://doi.org/10.14278/rodare.1194", "license": "https://creativecommons.org/licenses/by/1.0/legalcode", "@context": "https://schema.org/", "inLanguage": { "name": "English", "@type": "Language", "alternateName": "eng" }, "version": "0.1", "identifier": "https://doi.org/10.14278/rodare.1194", "sameAs": [ "https://www.hzdr.de/publications/Publ-33172" ] }
All versions | This version | |
---|---|---|
Views | 684 | 684 |
Downloads | 18 | 18 |
Data volume | 28.1 MB | 28.1 MB |
Unique views | 530 | 530 |
Unique downloads | 18 | 18 |
Stiller, Patrick, Zhdanov, Maksim, Rustamov, Jeyhun, Bethke, Friedrich, & Hoffmann, Nico. (2021, September 6). Neural Solvers (Version 0.1). Rodare. http://doi.org/10.14278/rodare.1194