Software Open Access
Stiller, Patrick;
Zhdanov, Maksim;
Rustamov, Jeyhun;
Bethke, Friedrich;
Hoffmann, Nico
<?xml version='1.0' encoding='utf-8'?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:cnt="http://www.w3.org/2011/content#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#"> <rdf:Description rdf:about="https://doi.org/10.14278/rodare.1194"> <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/> <dct:type rdf:resource="http://purl.org/dc/dcmitype/Software"/> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.14278/rodare.1194</dct:identifier> <foaf:page rdf:resource="https://doi.org/10.14278/rodare.1194"/> <dct:creator> <rdf:Description rdf:about="http://orcid.org/0000-0003-1950-069X"> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Stiller, Patrick</foaf:name> <foaf:givenName>Patrick</foaf:givenName> <foaf:familyName>Stiller</foaf:familyName> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Zhdanov, Maksim</foaf:name> <foaf:givenName>Maksim</foaf:givenName> <foaf:familyName>Zhdanov</foaf:familyName> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Rustamov, Jeyhun</foaf:name> <foaf:givenName>Jeyhun</foaf:givenName> <foaf:familyName>Rustamov</foaf:familyName> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Bethke, Friedrich</foaf:name> <foaf:givenName>Friedrich</foaf:givenName> <foaf:familyName>Bethke</foaf:familyName> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Hoffmann, Nico</foaf:name> <foaf:givenName>Nico</foaf:givenName> <foaf:familyName>Hoffmann</foaf:familyName> </rdf:Description> </dct:creator> <dct:title>Neural Solvers</dct:title> <dct:publisher> <foaf:Agent> <foaf:name>Rodare</foaf:name> </foaf:Agent> </dct:publisher> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2021</dct:issued> <dcat:keyword>PINNs</dcat:keyword> <dcat:keyword>PDEs</dcat:keyword> <dcat:keyword>Neural Solver</dcat:keyword> <dcat:keyword>Scalable AI</dcat:keyword> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021-09-06</dct:issued> <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/> <owl:sameAs rdf:resource="https://rodare.hzdr.de/record/1194"/> <adms:identifier> <adms:Identifier> <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://rodare.hzdr.de/record/1194</skos:notation> </adms:Identifier> </adms:identifier> <dct:relation rdf:resource="https://arxiv.org/pdf/2009.03730.pdf"/> <owl:sameAs rdf:resource="https://www.hzdr.de/publications/Publ-33172"/> <dct:isVersionOf rdf:resource="https://doi.org/10.14278/rodare.1193"/> <dct:isPartOf rdf:resource="https://rodare.hzdr.de/communities/matter"/> <dct:isPartOf rdf:resource="https://rodare.hzdr.de/communities/rodare"/> <owl:versionInfo>0.1</owl:versionInfo> <dct:description><p>Neural Solvers are neural network-based solvers for partial differential equations and inverse problems. The framework implements scalable physics-informed neural networks Physics-informed neural networks allow strong scaling by design. Therefore, we have developed a framework that uses data parallelism to accelerate the training of physics-informed neural networks significantly. To implement data parallelism, we use the Horovod framework, which provides near-ideal speedup on multi-GPU regimes.</p></dct:description> <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/> <dct:accessRights> <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess"> <rdfs:label>Open Access</rdfs:label> </dct:RightsStatement> </dct:accessRights> <dcat:distribution> <dcat:Distribution> <dct:rights> <dct:RightsStatement rdf:about="https://creativecommons.org/licenses/by/1.0/legalcode"> <rdfs:label>Creative Commons Attribution 1.0 Generic</rdfs:label> </dct:RightsStatement> </dct:rights> <dcat:accessURL rdf:resource="https://doi.org/10.14278/rodare.1194"/> </dcat:Distribution> </dcat:distribution> </rdf:Description> </rdf:RDF>
All versions | This version | |
---|---|---|
Views | 684 | 684 |
Downloads | 18 | 18 |
Data volume | 28.1 MB | 28.1 MB |
Unique views | 530 | 530 |
Unique downloads | 18 | 18 |
Stiller, Patrick, Zhdanov, Maksim, Rustamov, Jeyhun, Bethke, Friedrich, & Hoffmann, Nico. (2021, September 6). Neural Solvers (Version 0.1). Rodare. http://doi.org/10.14278/rodare.1194