Software Open Access
Stiller, Patrick;
Zhdanov, Maksim;
Rustamov, Jeyhun;
Bethke, Friedrich;
Hoffmann, Nico
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.14278/rodare.1194</identifier> <creators> <creator> <creatorName>Stiller, Patrick</creatorName> <givenName>Patrick</givenName> <familyName>Stiller</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1950-069X</nameIdentifier> </creator> <creator> <creatorName>Zhdanov, Maksim</creatorName> <givenName>Maksim</givenName> <familyName>Zhdanov</familyName> </creator> <creator> <creatorName>Rustamov, Jeyhun</creatorName> <givenName>Jeyhun</givenName> <familyName>Rustamov</familyName> </creator> <creator> <creatorName>Bethke, Friedrich</creatorName> <givenName>Friedrich</givenName> <familyName>Bethke</familyName> </creator> <creator> <creatorName>Hoffmann, Nico</creatorName> <givenName>Nico</givenName> <familyName>Hoffmann</familyName> </creator> </creators> <titles> <title>Neural Solvers</title> </titles> <publisher>Rodare</publisher> <publicationYear>2021</publicationYear> <subjects> <subject>PINNs</subject> <subject>PDEs</subject> <subject>Neural Solver</subject> <subject>Scalable AI</subject> </subjects> <dates> <date dateType="Issued">2021-09-06</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Software"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/1194</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="URL" relationType="IsCompiledBy">https://arxiv.org/pdf/2009.03730.pdf</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-33172</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.1193</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/matter</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier> </relatedIdentifiers> <version>0.1</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/1.0/legalcode">Creative Commons Attribution 1.0 Generic</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Neural Solvers are neural network-based solvers for partial differential equations and inverse problems. The framework implements scalable physics-informed neural networks Physics-informed neural networks allow strong scaling by design. Therefore, we have developed a framework that uses data parallelism to accelerate the training of physics-informed neural networks significantly. To implement data parallelism, we use the Horovod framework, which provides near-ideal speedup on multi-GPU regimes.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 684 | 684 |
Downloads | 18 | 18 |
Data volume | 28.1 MB | 28.1 MB |
Unique views | 530 | 530 |
Unique downloads | 18 | 18 |
Stiller, Patrick, Zhdanov, Maksim, Rustamov, Jeyhun, Bethke, Friedrich, & Hoffmann, Nico. (2021, September 6). Neural Solvers (Version 0.1). Rodare. http://doi.org/10.14278/rodare.1194