Dataset Restricted Access
Ellis, J. A.; Cangi, A.; Modine, N. A.; Stephens, J. A.; Thompson, A. P.; Rajamanickam, S.
{
"description": "<p>Output from electronic structure code (Quantum Espresso) that serves as training data for the machine-learning workflow of the related scientific publication (https://arxiv.org/abs/2010.04905).</p>",
"datePublished": "2020-12-11",
"@id": "https://doi.org/10.14278/rodare.646",
"name": "Accelerating Finite-temperature Kohn-Sham Density Functional Theory with Deep Neural Networks",
"identifier": "https://doi.org/10.14278/rodare.646",
"@type": "Dataset",
"creator": [
{
"affiliation": "Sandia National Laboratories",
"@type": "Person",
"name": "Ellis, J. A."
},
{
"affiliation": "Helmholtz-Zentrum Dresden-Rossendorf",
"@type": "Person",
"name": "Cangi, A."
},
{
"affiliation": "Sandia National Laboratories",
"@type": "Person",
"name": "Modine, N. A."
},
{
"affiliation": "Sandia National Laboratories",
"@type": "Person",
"name": "Stephens, J. A."
},
{
"affiliation": "Sandia National Laboratories",
"@type": "Person",
"name": "Thompson, A. P."
},
{
"affiliation": "Sandia National Laboratories",
"@type": "Person",
"name": "Rajamanickam, S."
}
],
"@context": "https://schema.org/",
"url": "https://rodare.hzdr.de/record/646",
"sameAs": [
"https://www.hzdr.de/publications/Publ-31857"
],
"keywords": [
"machine learning",
"neural networks",
"materials science",
"density functional theory"
]
}
| All versions | This version | |
|---|---|---|
| Views | 804 | 804 |
| Downloads | 1 | 1 |
| Data volume | 3.1 MB | 3.1 MB |
| Unique views | 497 | 497 |
| Unique downloads | 1 | 1 |