Dataset Restricted Access
Ellis, J. A.; Cangi, A.; Modine, N. A.; Stephens, J. A.; Thompson, A. P.; Rajamanickam, S.
{
"id": 646,
"conceptrecid": "645",
"links": {
"badge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.646.svg",
"doi": "https://doi.org/10.14278/rodare.646",
"conceptbadge": "https://rodare.hzdr.de/badge/doi/10.14278/rodare.645.svg",
"conceptdoi": "https://doi.org/10.14278/rodare.645",
"html": "https://rodare.hzdr.de/record/646",
"latest": "https://rodare.hzdr.de/api/records/646",
"latest_html": "https://rodare.hzdr.de/record/646"
},
"conceptdoi": "10.14278/rodare.645",
"updated": "2021-11-02T19:11:00.573697+00:00",
"metadata": {
"access_right": "restricted",
"relations": {
"version": [
{
"count": 1,
"last_child": {
"pid_type": "recid",
"pid_value": "646"
},
"is_last": true,
"index": 0,
"parent": {
"pid_type": "recid",
"pid_value": "645"
}
}
]
},
"access_conditions": "<p>While the release of the data is being approved by the collaborating research institution (Sandia National Laboratories), access should be restricted. Access to data should be granted on demand and logged. </p>",
"resource_type": {
"type": "dataset",
"title": "Dataset"
},
"description": "<p>Output from electronic structure code (Quantum Espresso) that serves as training data for the machine-learning workflow of the related scientific publication (https://arxiv.org/abs/2010.04905).</p>",
"access_right_category": "danger",
"related_identifiers": [
{
"relation": "isSupplementTo",
"identifier": "https://arxiv.org/abs/2010.04905",
"scheme": "url"
},
{
"relation": "isIdenticalTo",
"identifier": "https://www.hzdr.de/publications/Publ-31857",
"scheme": "url"
},
{
"relation": "isReferencedBy",
"identifier": "https://www.hzdr.de/publications/Publ-31603",
"scheme": "url"
},
{
"relation": "isVersionOf",
"identifier": "10.14278/rodare.645",
"scheme": "doi"
}
],
"title": "Accelerating Finite-temperature Kohn-Sham Density Functional Theory with Deep Neural Networks",
"notes": "This is only a limited set of the entire output data. The remainder of the data will be made available at a later point once approval from the collaborating research institution (Sandia National Laboratories) has been granted. The source code of the associated machine learning framework will also be published at that stage.",
"doc_id": "1",
"publication_date": "2020-12-11",
"communities": [
{
"id": "hzdr"
},
{
"id": "matter"
},
{
"id": "rodare"
}
],
"keywords": [
"machine learning",
"neural networks",
"materials science",
"density functional theory"
],
"doi": "10.14278/rodare.646",
"creators": [
{
"name": "Ellis, J. A.",
"affiliation": "Sandia National Laboratories"
},
{
"name": "Cangi, A.",
"affiliation": "Helmholtz-Zentrum Dresden-Rossendorf"
},
{
"name": "Modine, N. A.",
"affiliation": "Sandia National Laboratories"
},
{
"name": "Stephens, J. A.",
"affiliation": "Sandia National Laboratories"
},
{
"name": "Thompson, A. P.",
"affiliation": "Sandia National Laboratories"
},
{
"name": "Rajamanickam, S.",
"affiliation": "Sandia National Laboratories"
}
],
"pub_id": "31857"
},
"revision": 6,
"stats": {
"volume": 3061404.0,
"unique_downloads": 1.0,
"version_unique_downloads": 1.0,
"unique_views": 497.0,
"downloads": 1.0,
"version_unique_views": 497.0,
"version_views": 804.0,
"version_downloads": 1.0,
"version_volume": 3061404.0,
"views": 804.0
},
"created": "2020-12-15T15:20:41.338164+00:00",
"doi": "10.14278/rodare.646",
"owners": [
300
]
}
| All versions | This version | |
|---|---|---|
| Views | 804 | 804 |
| Downloads | 1 | 1 |
| Data volume | 3.1 MB | 3.1 MB |
| Unique views | 497 | 497 |
| Unique downloads | 1 | 1 |