Dataset Open Access

Data publication: Deep learning for dose-averaged linear energy transfer estimation in pencil-beam scanning and double scattering proton plans with uncertainty-aware external validation

Kieslich, Aaron Markus; Singh, Yerik; Palkowitsch, Martina; Starke, Sebastian; Hennings, Fabian; Troost, Esther Gera Cornelia; Krause, Mechthild; Bensberg, Jona; Lühr, Armin; Heinzelmann, Feline; Bäumer, Christian; Timmermann, Beate; Depauw, Nicolas; Shih, Helen A.; Löck, Steffen

This repository contains the outputs, model checkpoints and result data of our deep-learning-based experiments for the approximation of Monte-Carlo-simulated linear energy transfer distributions and uncertainty estimation, which build the foundation for the corresponding article.

Files (1.8 GB)
Name Size
RODARE.zip
md5:f10a43bf976fb3efb9598d5fad05008d
1.8 GB Download
0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as