Dataset Restricted Access
Singh, Digvijay;
Boden, Stephan;
Schlegel, Fabian
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="DOI">10.14278/rodare.4025</identifier>
<creators>
<creator>
<creatorName>Singh, Digvijay</creatorName>
<givenName>Digvijay</givenName>
<familyName>Singh</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-8930-5374</nameIdentifier>
<affiliation>Helmholtz-Zentrum Dresden - Rossendorf .e.V</affiliation>
</creator>
<creator>
<creatorName>Boden, Stephan</creatorName>
<givenName>Stephan</givenName>
<familyName>Boden</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-7170-078X</nameIdentifier>
<affiliation>Helmholtz-Zentrum Dresden - Rossendorf e.V.</affiliation>
</creator>
<creator>
<creatorName>Schlegel, Fabian</creatorName>
<givenName>Fabian</givenName>
<familyName>Schlegel</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3824-9568</nameIdentifier>
<affiliation>Helmholtz-Zentrum Dresden - Rossendorf e.V.</affiliation>
</creator>
</creators>
<titles>
<title>FVV1455: CFD Simulation of Droplet Separators</title>
</titles>
<publisher>Rodare</publisher>
<publicationYear>2024</publicationYear>
<subjects>
<subject>Numerical Simulation</subject>
<subject>Droplets</subject>
<subject>Film Modeling</subject>
<subject>Multiphase Flow</subject>
<subject>Fuel Cell</subject>
<subject>Separation</subject>
<subject>Automotive</subject>
<subject>Experiments</subject>
</subjects>
<dates>
<date dateType="Issued">2024-10-07</date>
</dates>
<language>en</language>
<resourceType resourceTypeGeneral="Dataset"/>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://rodare.hzdr.de/record/4025</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsIdenticalTo">https://www.hzdr.de/publications/Publ-37650</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.14278/rodare.2506</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://rodare.hzdr.de/communities/rodare</relatedIdentifier>
</relatedIdentifiers>
<version>5.0.0</version>
<rightsList>
<rights rightsURI="info:eu-repo/semantics/restrictedAccess">Restricted Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>For industrial applications, the two-fluid model is preferred due to its&nbsp;<br>
efficient modelling of small-scale interfaces. Whereas, a thin film model,&nbsp;<br>
based on a long wave approximation, is used for the unresolved interfaces to&nbsp;<br>
obtain the film features by solving the 2D Navier-Stokes equations for wall&nbsp;<br>
films. Within the project, the target is to develop an experimentally validated&nbsp;<br>
3D-CFD model to investigate the separation efficiency of droplet separators for&nbsp;<br>
fuel cell systems. A hybrid model is developed, which couples the two-fluid&nbsp;<br>
model with a thin film model via mass transfer terms for droplet deposition,&nbsp;<br>
droplet entrainment and film separation. A two-way coupling between droplets&nbsp;<br>
and the thin film is established using mass and momentum source terms, derived&nbsp;<br>
analytical and from available experiments. The droplet separator is an essential&nbsp;<br>
component of an automotive fuel cell system that segregates a significant amount&nbsp;<br>
of liquid fractions from the air-water mixture. The flow dynamics inside a&nbsp;<br>
droplet separator consist of a dispersed gas and liquid with a wall adhered&nbsp;<br>
thin liquid film. The modelling is divided into the following stages due to the&nbsp;<br>
complex fluidic phenomenon inside a generic droplet separator:</p>
<ul>
<li>Droplet deposition model,</li>
<li>Film separation model,</li>
<li>Film transition model, and</li>
<li>Population balance model.</li>
</ul>
<p>In order to systematically validate numerical models and methods that predict&nbsp;<br>
the characteristics of films and the separation efficiencies of droplet&nbsp;<br>
separators, high-quality experimental data must be carefully acquired. For the&nbsp;<br>
experimental investigations an air-water two-phase flow loop was set up. The&nbsp;<br>
flow loop is extensively instrumented in order to provide precise data on the&nbsp;<br>
respective operating conditions such as mass low and pressure drop. The&nbsp;<br>
following advanced measurement techniques have been applied:</p>
<ul>
<li>HZDR&#39;s flow microscope to investigate droplet flow,</li>
<li>HZDR&#39;s advanced microfocus X-ray tomograph to visualize the liquid films, and</li>
<li>radioscopic imaging to investigate dynamic flow processes.</li>
</ul>
<p>The generic droplet separator was extensively tested under varying operating&nbsp;<br>
conditions at a total of 27 measurement points covering a wide range of mostly&nbsp;<br>
wavy and annular inlet flow conditions. The resulting comprehensive set of&nbsp;<br>
experimental data provides an excellent basis for the development and validation<br>
of numerical design tools required by the industry.</p></description>
<description descriptionType="Other">The research project was self-financed (FVV funding no. 1455) by the FVV e.V.</description>
</descriptions>
</resource>
| All versions | This version | |
|---|---|---|
| Views | 2,635 | 190 |
| Downloads | 121 | 35 |
| Data volume | 695.7 GB | 689.8 GB |
| Unique views | 1,857 | 124 |
| Unique downloads | 51 | 11 |