Dataset Open Access
Arbash, Elias;
de Lima Ribeiro, Andrea;
Rizaldy, Aldino;
Fuchs, Margret;
Ghamisi, Pedram;
Scheunders, Paul;
Gloaguen, Richard
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Arbash, Elias</dc:creator> <dc:creator>de Lima Ribeiro, Andrea</dc:creator> <dc:creator>Rizaldy, Aldino</dc:creator> <dc:creator>Fuchs, Margret</dc:creator> <dc:creator>Ghamisi, Pedram</dc:creator> <dc:creator>Scheunders, Paul</dc:creator> <dc:creator>Gloaguen, Richard</dc:creator> <dc:date>2024-12-08</dc:date> <dc:description>Investigating State of the Art Hyperspectral Imaging Classification Models for Plastic Types Identification Polymers Dataset Description: The polymers dataset is a multiscene Hyperspectral benchmark dataset comprising of reference polymer samples and shredded polymer samples in the visible to short-wave infrared, capturing 450 bands within the [400–2500] nm range using an AisaFENIX (Spectral Imaging Ltd, Oulu, Finland) spectrometer. Two sample batches were investigated: reference polymers of known composition and dimensions (15 X 10) cm, commonly found in e-waste. shredded pieces of polymers with sizes ranging from (0.3–4) cm. Data Format HSI data: each hyperspectral data cube is accompanied by a data file and a .hdr file. Ground truth mask: .png file (only for multi samples scenes) Folder Organization Polymers Test HSI: .dat & .hdr Ground truth mask: test.png False colour representation of the scene: .png Train HSI_ : 3 different scans of reference samples scanned PC, PE, PET, PP: Hyperspectral cubes (11x11x450) .hdr & .dat Data Classes in Masks Masks contain 1 to 6 segmentation classes: 1: "PP" 2: "Black Plastic" 3: "PVC" 4: "PET" 5: "ABS" 6: "PE" Code Repository To facilitate reading and working with the data, Python codes are available on the GitHub repository: https://github.com/hifexplo https://github.com/Elias-Arbash Citation If you use this dataset, please cite the following article: (To be filled once published) Contact For further information or inquiries, please visit our website: https://www.iexplo.space/ Contact Email: e.arbash@hzdr.de</dc:description> <dc:description>The HSI dataset of the work: INVESTIGATING STATE OF THE ART HYPERSPECTRAL IMAGING CLASSIFICATION MODELS FOR PLASTIC TYPES IDENTIFICATION</dc:description> <dc:identifier>https://rodare.hzdr.de/record/3390</dc:identifier> <dc:identifier>10.14278/rodare.3390</dc:identifier> <dc:identifier>oai:rodare.hzdr.de:3390</dc:identifier> <dc:relation>url:https://www.hzdr.de/publications/Publ-40592</dc:relation> <dc:relation>url:https://www.hzdr.de/publications/Publ-40590</dc:relation> <dc:relation>doi:10.14278/rodare.3389</dc:relation> <dc:relation>url:https://rodare.hzdr.de/communities/hzdr</dc:relation> <dc:relation>url:https://rodare.hzdr.de/communities/rodare</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:subject>Hyperspectral Image Classification</dc:subject> <dc:subject>Plastic</dc:subject> <dc:subject>Polymers</dc:subject> <dc:subject>E-waste</dc:subject> <dc:subject>Deep Learning</dc:subject> <dc:subject>Machine Learning</dc:subject> <dc:title>Polymers Hyperspectral Imaging</dc:title> <dc:type>info:eu-repo/semantics/other</dc:type> <dc:type>dataset</dc:type> </oai_dc:dc>
| All versions | This version | |
|---|---|---|
| Views | 338 | 338 |
| Downloads | 28 | 28 |
| Data volume | 15.2 GB | 15.2 GB |
| Unique views | 289 | 289 |
| Unique downloads | 25 | 25 |